DOI QR코드

DOI QR Code

Investigation on Minimum Film Boiling Point of Highly Heated Vertical Metal Rod in Aqueous Surfactant Solution

계면활성제 수용액 내 고온 수직 금속봉의 최소막비등점에 대한 연구

  • Lee, Chi Young (Dept. of Fire Protection Engineering, Pukyong Nat'l Univ.) ;
  • Kim, Jae Han (Dept. of Fire Protection Engineering, Pukyong Nat'l Univ.)
  • Received : 2017.03.11
  • Accepted : 2017.06.11
  • Published : 2017.09.01

Abstract

In this study, experiments were conducted on the MFB(minimum film boiling) point of highly heated vertical metal rod quenched in aqueous surfactant solution at various temperature conditions. The aqueous Triton X-100 solution(100 wppm) and pure water were used as the liquid pool. Their temperatures ranged from $77^{\circ}C$ to $100^{\circ}C$. A stainless steel vertical rod of initial center temperature of $500^{\circ}C$ was used as a test specimen. In both liquid pools, as the liquid temperature decreased, the time to reach the MFB point decreased with a parallel increase in the temperature and heat flux of the MFB point. However, over the whole present temperature range, in the aqueous Triton X-100 solution, the time to reach the MFB point was longer, while the temperature and heat flux of the MFB point were reduced when compared with pure water. Based on the present experimental data, this study proposed the empirical correlations to predict the MFB temperature of a high temperature vertical metal rod in pure water and in aqueous Triton X-100 solution.

다양한 온도 조건의 계면활성제 수용액 내에서 급속 냉각되는 고온 수직 금속봉의 최소막비등점에 대한 실험을 수행하였다. 액체로는 Triton X-100 수용액(100 wppm)과 순수(pure water)를 이용하였고, 액체의 온도는 $77^{\circ}C{\sim}100^{\circ}C$ 영역이었다. 고체 시편으로는 시편 중심의 초기 온도가 $500^{\circ}C$인 스테인레스 스틸(stainless steel) 수직봉을 이용하였다. Triton X-100 수용액과 순수에서, 액체의 온도가 감소함에 따라 최소막비등점의 도달시간은 감소하였고, 온도 및 열유속은 증가하였다. 한편, 본 실험 온도 영역에서, Triton X-100 수용액의 경우가 순수의 경우보다 최소막비등점의 도달시간은 길었고, 온도 및 열유속은 감소하는 경향을 나타냈다. 본 실험데이터를 토대로 고온 수직 금속봉에 대해서 Triton X-100 수용액과 순수에서의 최소막비등 온도에 대한 실험식을 제안하였다.

Keywords

References

  1. Kim, H., DeWitt, G., McKrell, T., Buongiorno, J. and Hu, L., 2009, "On the Quenching of Steel and Zircaloy Spheres in Water-based Nanofluids with Alumina, Silica and Diamond nanoparticles," Int. J. Heat Mass Transfer, Vol. 35, pp. 427-438.
  2. Sinha, J., Hochreiter, L. E. and Cheung, F. B., 2003, "Effects of Surface Roughness, Oxidation Level, and Liquid Subcooling on the Minimum Film Boiling Temperature," Exp. Heat Transfer J. Therm. Energy Gener. Transport Storage Convers, Vol. 16, No. 1, pp. 45-60.
  3. Kang, J. Y., Kim, S. H., Jo, H. J., Park, G. Y., Ahn, H. S., Moriyama, K., Kim, M. H. and Park, H. S., 2016., "Film Boiling Heat Transfer on a Completely Wettable Surface with Atmospheric Saturated Distilled Water Quenching," Int. J. Heat Mass Transfer, Vol. 93, pp. 67-74. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.049
  4. Fan, L. W., Li, J. Q., Li, D. Y., Zhang, L. and Yu, Z. T., 2014, "Regulated Transient Pool Boiling of Water During Quenching on Nanostructured Surfaces with Modified Wettability from Superhydrophilic to Superhydrophobic," Int. J. Heat Mass Transfer, Vol. 76, pp. 81-89. https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.025
  5. Lee, C. Y., Chun, T. H. and In, W. K., 2014, "Effect of Change in Surface Condition Induced by Oxidation on Transient Pool Boiling Heat Transfer of Vertical Stainless Steel and Copper Rodlets," Int. J. Heat Mass Transfer, Vol. 79, pp. 397-407. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.030
  6. Lee, C. Y., In, W. K. and Koo, Y. H., 2016, "Transient Pool Boiling Heat Transfer During Rapid Cooling Under Saturated Water Condition," J. Nucl. Sci. Technol., Vol. 53, No. 3, pp. 371-379. https://doi.org/10.1080/00223131.2015.1045952
  7. Bolukbasi, A. and Ciloglu, D., 2007, "Investigation of Heat Transfer by Means of Pool Film Boiling on Vertical Cylinders in Gravity," Heat Mass Transfer, Vol. 44, pp. 141-148. https://doi.org/10.1007/s00231-007-0238-7
  8. Bolukbasi, A. and Ciloglu, D., 2011, "Pool Boiling Heat Transfer Characteristics of Vertical Cylinder Quenched by $SiO_2$-water Nanofluids," Int. J. Therm. Sci., Vol. 50, pp. 1013-1021. https://doi.org/10.1016/j.ijthermalsci.2011.01.011
  9. Kim, H., Buongiorno, J., Hu, L. and McKrell, T., 2010, "Nanoparticle Deposition Effects on the Minimum Heat Flux Point and Quench Front Speed during Quenching in Water Based Alumina Nanofluids," Int. J. Heat Mass Transfer, Vol. 53, pp. 1542-1553. https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.029
  10. Lee, S. W., Kim, S. M., Park, S. D. and Bang, I. C., 2013, "Study on the Cooling Performance of Sea Salt Solution During Reflood Heat Transfer in a Long Vertical Tube," Int. J. Heat Mass Transfer, Vol. 60, pp. 105-113. https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.046
  11. Cheng, L., Mewes, D. and Luke, A., 2007, "Boiling Phenomena with Surfactants and Polymeric Additives: A State-of-the-art Review," Int. J. Heat Mass Transfer, Vol. 50, pp. 2744-2771. https://doi.org/10.1016/j.ijheatmasstransfer.2006.11.016
  12. Wu, W. T., Lin, H. S., Yang, Y. M. and Maa, J. R., 1994, Critical Heat Flux in Pool Boiling of Aqueous Surfactant Solutions as Determined by the Quenching Method," Int. J. Heat Mass Transfer, Vol. 37, pp. 2377-2379. https://doi.org/10.1016/0017-9310(94)90377-8
  13. Berenson, P. J., 1961, "Film-boiling Heat Transfer From a Horizontal Surface," J. Heat Transfer, Vol. 83, pp. 351-358. https://doi.org/10.1115/1.3682280
  14. Nishio, S. and Hirata, M., 1978, "Direct Contact Phenomenon Between a Liquid Droplet and High Temperature Solid Surface," 6th International Heat Transfer Conference, Toronto, Canada, Hemisphere, New York, pp. 245-250.
  15. Thermophysical Properties of Fluid Systems, NIST(National Institute of Standards and Technology): http://webbook.nist.gov/chemistry/fluid/.
  16. Manglik, R. M., Wasekar, V. M. and Zhang, J., 2001, "Dynamic and equilibrium surface tension of aqueous surfactant and polymeric solutions," Exp. Therm. Fluid. Sci., Vol. 25, pp. 55-64. https://doi.org/10.1016/S0894-1777(01)00060-7
  17. Freud, R., Harari, R. and Sher, E., 2009, "Collapsing Criteria for Vapor Film Around Solid Spheres as a Fundamental Stage Leading to Vapor Explosion," Nucl. Eng. Des., Vol. 239, pp. 722-727. https://doi.org/10.1016/j.nucengdes.2008.11.021
  18. Kline, S. J., 1985, "The Purpose of Uncertainty Analysis," J. Fluids Eng., Vol. 107, pp. 153-160. https://doi.org/10.1115/1.3242449
  19. Yamada, T., Toyoda, K., Shigechi, T., Momoki, S., Kanemaru, K. and Yamaguchi, T., 2010, "Film Boiling Heat Transfer around a Vertical Finite-length Cylinder with a Convex Hemispherical Bottom," Heat Tran Asian Res, Vol. 39, No. 3, pp. 166-177.
  20. Dhir, V. K. and Purohit, G. P., "Subcooled Film-Boiling Heat Transfer from Spheres," Nucl. Eng. Des., Vol. 47, 1978, pp. 49-66. https://doi.org/10.1016/0029-5493(78)90004-3