• Title/Summary/Keyword: Solidification mechanism

Search Result 77, Processing Time 0.022 seconds

Solidification Simulation for Optimal Cooling of Bloom Type Continuous Casting Machine (Bloom 연주기의 최적 냉각조건 도출을 위한 응고 시뮬레이션)

  • Jung, Young-Jin;Kim, Young-Mo;Cho, Kee-Hyeon;Kang, Chung-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1629-1636
    • /
    • 2004
  • The continuous casting is primarily a heat-extraction process in which the heat transfer at various cooling zones profoundly influences quality of products. So development of numerical model is necessarily needed for more specific and clear investigations upon heat transfer mechanism at mold and secondary cooling zones. In this study, heat transfer coefficients which show the characteristic of heat transfer mechanism in mold are calculated for more exact analysis with temperature measured in bloom mold using optimal algorithm, and finally the validity of cooling conditions at secondary cooling zone actually used at field fur 30 Ton bloom type continuous casting of 0.187%C is investigated. From the results of solidification analysis, the characteristic of bloom mold shows a similar tendency with that of previous studies, and optimized cooling conditions for 0.187%C are presented.

NUMERICAL SIMULATION OF THREE-DIMENSIONAL DENDRITIC GROWTH WITH FLUID CONVECTION (유체 유동을 동반한 수치상결정 미세구조의 3차원 성장에 대한 수치해석적 연구)

  • Yoon, Ik-Roh;Shin, Seung-Won
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.355-362
    • /
    • 2009
  • Most material of engineering interest undergoes solidification process from liquid to solid state. Identifying the underlying mechanism during solidification process is essential to determine the microstructure of material which governs the physical properties of final product. In this paper, we expand our previous two-dimensional numerical technique to three-dimensional simulation for computing dendritic solidification process with fluid convection. We used Level Contour Reconstruction Method to track the moving liquid-solid interface and Sharp Interface Technique to correctly implement phase changing boundary condition. Three-dimensional results showed clear difference compared to two-dimensional simulation on tip growth rate and velocity.

  • PDF

Structure and Properties of Rapidly-Solidified Al-Pb Monotectic Alloys.;I. Characteristics of Rapidly-Solidified Microstructure (급속 응고한 Al-Pb 편정 합금의 조직과 성질;I. 급속 응고 조직 특성)

  • Kim, Myung-Ho;Bae, Cha-Hurn;Lee, Ho-In
    • Journal of Korea Foundry Society
    • /
    • v.9 no.1
    • /
    • pp.73-79
    • /
    • 1989
  • Microstructural characteristics of Al-3.63wt.%Pb hyper-monotectic alloy rapidly-solidified by melt spinning were examined. Possibility of forming a planar liquid -solid interface during rapid solidification of this alloy was also considered with a morphological stability theory, and a mechanism of forming banded structure observed at the bottom parts of melt-spinned specimens was considered as well. Application of the absolute stability criterion predicts the liquid-solid interface of the primary aluminium phase to be able to maintain a planar interface during the early stage of rapid solidification. Formation of banded structure was supposed to be resulted from the release of latent heat during solidification, which affect the stability of a planar liquid-solid interface.

  • PDF

A Study on the Width of Liquid Layer of Ni/B/Ni Diffusion Bonding System (Ni/B/Ni 액상확산접합계의 액상폭에 관한 연구)

  • ;;Kang, C. S.
    • Journal of Welding and Joining
    • /
    • v.13 no.4
    • /
    • pp.147-154
    • /
    • 1995
  • In order to study the bonding mechanism of Ni/B/Ni transient liquid phase bonding system, width of liquid layers were calculated, where in this system melting point of insert material(B) is higher than bonding temperature and melting point of base metal(Ni). Caclulated values were compared with experimental ones which were measured by bonding Ni/B/Ni system at 1433-1474K under vacuum atmosphere. As results, the width of initial liquid layer of Ni/B/Ni system was calculated as $W_{IL}$ = $W_{o}$[1 + {2.100..rho.$_{S/}$ ( $X_{3}$ + $X_{4}$)..rho.$_{Ni}$ }-.rho.$_{S/}$.rho. Ni/], and it was nearly same with experimental values. Maximum width of liquid layer, width of liquid layer during isothermal solidification and isothermal solidification time were calculated also.o.o.o.

  • PDF

Numerical Simulation of Dendritic Growth of the Multiple Seeds with Fluid Flow (유체 유동을 동반한 다핵 수치상결정의 미세구조성장에 대한 수치해석적 연구)

  • Yoon, Ik-Roh;Shin, Seung-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.469-476
    • /
    • 2009
  • Most material of engineering interest undergoes solidification process from liquid state. Identifying the underlying mechanism during solidification process is essential to determine the microstructure of material thus the physical properties of final product. In this paper, effect of fluid convection on the dendrite solidification morphology is studied using Level Contour Reconstruction Method. Sharp interface technique is used to implement correct boundary condition for moving solid interface. The results showed good agreement with exact boundary integral solution and compared well with other numerical techniques. Effects of Peclet number and undercooling on growth of dendrite tip of both single and multiple seeds have been also investigated.

The Influence of Cooling Rates on the CFR and the MDE of Al-Si Alloys. (Al-Si합금(合金)의 CFR 과 MDE 에 미치는 냉각속도(冷却速度)의 영향(影響))

  • Kwon, Hyuk-Moo;Kim, Soo-Young
    • Journal of Korea Foundry Society
    • /
    • v.4 no.4
    • /
    • pp.14-19
    • /
    • 1984
  • In order to clarify the solidification mechanism of Al-Si alloy, Mushy Degree of Eutectic Solidification (MDE) and Centerline Feeding Resistance (CFR) were systematically studied by casting with various compositions of $Al-(6{\sim}18%)$ Si alloys into several kinds of molds having different cooling rates. The results are as follows: 1. CFR% increases slightly as solute concentration increases, but decreases remarkably as the cooling rate of the mold increases, that is, the composition dependence of the alloys has more effect on the change of CFR% than that of the mold cooling rate. 2. The composition dependence of MDE value has the same tendency as that of Degree of Eutectic Solidification (DES). MDE value within the range of hypereutectic composition is larger than that of hypoeutectic and it represents the maximum value at eutectic composition. The higher the cooling rate is, the less the MDE value is.

  • PDF

Mechanism of Crack Formation in Pulse Nd:YAG Laser Spot Welding of Al Alloys (Al합금 펄스 Nd:YAG 레이저 점 용접부의 균열 발생기구)

  • 하용수;조창현;강정윤;김종도;박화순
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.86-94
    • /
    • 2000
  • This study was performed to investigate types and formation mechanism of cracks in two Al alloy welds, A5083 and A7N01 spot-welded by pulse Nd : YAG laser, using SEM, EPMA and Micro-XRD. In the weld zone, three types of crack were observed : center line crack({TEX}$C_{C}${/TEX}), diagonal crack({TEX}$C_{D}${/TEX}), and U shape crack({TEX}$C_{U}${/TEX}). Also, HAZ crack({TEX}$C_{H}${/TEX}) was observed in the HAZ region, furthermore, mixing crack({TEX}$C_{M}${/TEX}) consisting of diagonal crack and HAZ crack was observed. White film was formed at th hot crack region in the fractured surface after it was immersed to 10% NaOH water. In the case of A5083 alloy, white films in {TEX}$C_{C}${/TEX} crack and {TEX}$C_{D}${/TEX} crack region were composed of low melting phases, {TEX}$Fe_{2}SiAl_{8}${/TEX} and eutectic phases, $Mg_2$Al$_3$ and $Mg_2$Si. Such films observed $CuAl_2$, {TEX}$Mg_{32}(Al,Zn)_{3}${/TEX}, MgZn$_2$, $Al_2$CuMg and $Mg_2$Si were observed in the whitely etched films near {TEX}$C_{C}${/TEX} crack and {TEX}$C_{D}${/TEX} crack regions. The formation of liquid films was due to the segregation of Mg, Si, Fe in the case of A5083 alloy and Zn, Mg, Cu, Sim in the case of A7N01 alloy, respectively. The {TEX}$C_{C}${/TEX} and {TEX}$C_{D}${/TEX} cracks were regarded as a result of the occurrence of tensile strain during the welding process. The formation of {TEX}$C_{M}${/TEX} crack is likely to be due to the presence of liquid film at the grain boundary near the fusion line in the base metal as well as in the weld fusion zone during solidification. The {TEX}$C_{U}${/TEX} crack is considered a result of the collapsed keyhole through incomplete closure during rapid solidification.

  • PDF

Analysis of Natural Convection Heat Transfer and Solidification of a Two-Layered Pool (2층으로 성층화된 풀 내에서의 자연대류 열전달과 고화현상에 대한 연구)

  • Kim J.;Kang K. S.;Kim S. B.;Kim H. D.
    • Journal of computational fluids engineering
    • /
    • v.6 no.1
    • /
    • pp.1-13
    • /
    • 2001
  • The natural convection heat transfer and solidification in a stratified pool are studied. The flow and heat transfer characteristics in a heat generating pool are compared between single-layered and double-layered pools. And local Nusselt number distributions on outer walls are obtained to consider thermal loads on a vessel wall. The cooling and solidification of Al₂O₃/Fe melt in a hemispherical vessel are simulated to study the mechanism of heat transfer and temperature distribution. A unstructured mesh is chosen for this study because of the non-orthogonality originated from the boundaries of double-layered pool. Interface between the layers is modeled to be fixed. With this assumption mass flux across the interface is neglected, but shear force and heat flux are considered by boundary conditions. The colocated cell-centered finite volume method is used with the Rhie-Chow interpolation to compute cell face velocity. To prevent non-physical solutions near walls in case body force is large the wall pressure is extrapolated by the way to include body force. The numerical solutions calculated by current method show that averaged downward heat flux of the double-layered pool increases compared to single-layered pool and maximum temperature occurs right below the interface of the layers.

  • PDF

The Mixing Ratio Effect of Insert Metal Powder and Insert Brazing Powder on Microstructure of the Region Brazed on DS Ni Base Super Alloy (일방향응고 Ni기 초내열합금 천이액상화산접합부의 미세조직에 미치는 모재와 삽입금속 분말 혼합비의 영향)

  • Ye Chang-Ho;Lee Bong-Keun;Song Woo-Young;Oh In-Seok;Kang Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.99-105
    • /
    • 2005
  • The mixing ratio effect of the GTD-111(base metal) powder and the GNI-3 (Ni-l4Cr-9.5Co-3.5Al-2.5B) powder on TLP(Transient Liquid Phase) bonding phenomena and mechanism was investigated. At the mixing ratio of the base metal powder under $50wt\%$, the base metal powders fully melted at the initial time and a large amount of the base metal near the bonded interlayer was dissolved by liquid inter metal. Liquid insert metal was eliminated by isothermal solidification which was controlled by the diffusion of B into the base metal. The solid phases in the bonded interlayer grew epitaxially from the base metal near the bonded interlayer inward the insert metal during the isothermal solidification. The number of grain boundaries farmed at the bonded interlayer corresponded with those of base metal. At the mixing ratio above $60wt\%$, the base metal powder melted only at the surface of the powder and the amount of the base metal dissolution was also less at the initial time. Nuclear of solids firmed not only from the base metal near the bonded interlayer but also from the remained base metal powder in the bonded interlayer. Finally, the polycrystal in the bonded interlayer was formed when the isothermal solidification finished. When the isothermal solidification was finished, the contents of the elements in the boned interlayer were approximately equal to those of the base metal. Cr-W borides and Cr-W-Ta-Ti borides formed in the base metal near the bonded interlayer. And these borides decreased with the increasing of holding time.