• 제목/요약/키워드: Solidification Latent Heat

검색결과 38건 처리시간 0.02초

Fundamental study on development of latent heat storage material for waste heat recovery of biomass gasification

  • Kim, MyoungJun;Yu, JikSu;Chea, GyuHoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권5호
    • /
    • pp.533-540
    • /
    • 2014
  • Recently, latent heat thermal energy storage system (LHTES) has gained attention in order to utilize middle temperature (373~573 K) waste heat from biomass gasification. This paper has investigated thermo-physical properties of erythritol [$CH_2OHCHOH$ $CHOHCH_2OH$], mannitol [$CH_2OH$ $(CHOH)_4CH_2OH$] and their compounds as phase change materials (PCMs). The differential scanning calorimetry (DSC) was applied to measure the melting point and latent heat of these PCMs. Also the melting and solidification characteristics of these PCMs were observed in a glass tube with a digital camera. In the DSC measurement, when the amount of mannitol content was more than 40 mass%, the melting point of these compounds show two melting points. The experimental results showed that the velocity of melting and solidification were different for every mixture ratio of compounds. These compounds had the super-cooling phenomenon during the solidification process.

FDM에 의한 응고해석시 계산시간 단축을 위한 음적해법의 적용과 잠열처리방법 (Reduction of Computing Time through FDM using Implicit Method and Latent Heat Treatment in Solidification Analysis)

  • 김태규;최정길;홍준표;이진형
    • 한국주조공학회지
    • /
    • 제13권4호
    • /
    • pp.323-332
    • /
    • 1993
  • An implicit finite difference formulation with three methods of latent heat treatment, such as equivalent specific heat method, temperature recovery method and enthalpy method, was applied to solidification analysis. The Neumann problem was solved to compare the numerical results with the exact solution. The implicit solutions with the equivalent specific heat method and the temperature recovery method were comparatively consistent with the Neumann exact solution for smaller time steps, but its error increased with increasing time step, especially in predicting the solidification beginning time. Although the computing time to solve energy equation using temperature recovery method was shorter than using enthalpy method, the method of releasing latent heat is not realistic and causes error. The implicit formulation of phase change problem requires enthalpy method to treat the release of latent heat reasonably. We have modified the enthalpy formulation in such a way that the enthalpy gradient term is not needed, and as a result of this modification, the computation stability and the computing time were improved.

  • PDF

유한두께를 가지는 원형관내의 응고과정의 열전도 (Heat Conduction of the Solidification Process in a Cylinder with Finite Thichness)

  • 이문주;노승탁
    • 대한기계학회논문집
    • /
    • 제1권4호
    • /
    • pp.196-202
    • /
    • 1977
  • The solidification process in a cylinder with finite thickness in studied by explicit finite difference method. The temperature distribution, the solidification front profile and the dischrged latent heat for the process are obtained. It is found that the solidification front profile is almost linear except in the vicinity of the initation of phase change. This result motivates us to use linear relations between the position of solidification and time for approximate calculations.

원통형 용기에서의 잠열 축열에 관한 실험적 연구 (An Experimental Study on the Latent Heat Storage Using Phase Change Material Within Cylindrical Can)

  • 고득용;최헌오;김효봉
    • 한국기계연구소 소보
    • /
    • 통권19호
    • /
    • pp.23-30
    • /
    • 1989
  • Heat transfer phenomena of solidification process of the phase change material within cylindrical can is studied experimentally. N-Eicosane paraffin wax is used for phase change material and its melting temperature is 309.8 K. In order to achieve higher heat transfer rate of latent heat storage apparatus, fins in made of copper are used in the cylindrical can. If there are fins in cylindrical can, we can know that the inward latent heat energy in paraffin can be effectively transfered to cooling water than if finless.

  • PDF

상변화와 접촉을 고려한 축대칭 주조 응고공정의 유한요소 해석 (Finite Element Analysis of Solidification Processes of Axisymmetric Castings Considering Phase Change and Contact)

  • Ghoo, B.Y.;Keum, Y.T.;Lee, J.K.
    • 한국정밀공학회지
    • /
    • 제14권1호
    • /
    • pp.126-141
    • /
    • 1997
  • The purpose of this research is to develope a FEM program for analyzing solidification processes of axisymmetric casting, considering phase changes and the contact between the metal and mold. Tempera- ture recovery method is employed fro considering the phase changes releasing the latent heat and the coin- cident node method is used for calculating the amount of heat transfer between the metal and mold. Tan- gent modulus algorithm is adopted for calculating flow stress and a gap element is employed for modeling the interface between the mold and metal in finding deformed shapes. In order to verify the developed program, axisymmetric aluminum and steel casting processes are simulated. Temperature distribution, phase front position, and shrinkage and porosity creation are compared with measurements, FIDAP results, and good agreements are examined.

  • PDF

ANALYSIS OF WELD METAL STRUCTURE AND MECHANICAL BEHAVIOUR ENVISAGING PHASE CHANCE LATENT HEAT EFFECT

  • ;방한서;주성민;방희선
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2004년도 추계학술발표대회 개요집
    • /
    • pp.283-285
    • /
    • 2004
  • In this paper an important class of problems in welding which come under the category of phase change is considered, Solidification and melting are important process in welding field. Phase change problems are accompanied by either absorption or release of thermal energy i,e, heat transfer process. This is complicated by the release or absorption of the latent heat of fusion at the solid-liquid interface. In this study the liberation of latent heat is taken in to account using fixed grid method. The numerical simulation and the finite element codes for the heat transfer analysis including the latent heat term has been developed based on this fixed grid method.

  • PDF

일방향 응고법을 이용한 Mar M-247LC 초내열합금의 액상 물성 측정 (Estimation of Liquid Physical Properties of Mar-M247LC Superalloy by Directional Solidification)

  • 김현철;이재현;서성문;김두현;조창용
    • 한국재료학회지
    • /
    • 제11권9호
    • /
    • pp.721-726
    • /
    • 2001
  • Directional solidification experiments have been carried out at the solidification rates from 0.5 to 50$\mu\textrm{m}$/s in Mar M-247LC superalloy in which several important liquid properties were estimated by analyzing the interface stability and temperature gradient at the solid/liquid interface. The diffusion coefficient in the liquid was estimated by employing the constitutional supercooling criterion. The temperature gradients changed with solidification rates and latent heat of solidification. The thermal conductivities of solid and liquid could be estimated by heat flux balance at the solid liquid interface.

  • PDF

냉열잠열축열조의 성능해석 (Performance of the Cold Latent Storage System)

  • 윤호식;노승탁
    • 대한설비공학회지:설비저널
    • /
    • 제17권4호
    • /
    • pp.456-465
    • /
    • 1988
  • The performance of the cold latent heat storage is investigated by experiment and by a simplified analytic approach. The heat storage tank has eight horizontal circular tubes and one path of refrigerant evaporating tube. The phase change material in the heat storage tank is water which is frozen by evaporating refrigerant of refrigeration system and melts by the warm air in the heat storage tank. In the experiment, the performance has been studied by the various conditions including the initial water temperature on solidification and flow rate and temperature of air. The rate of recovered heat has been simulated by a simplified model and the results shows a good agreement. In solidification process, initial water temperature causes time delay corresponding to the sensible heat and it is found that the shape of evaporator is important. In melting process, the recovered heat rate from the heat storage tank is proportional to $Re^{0.8}(T_{bi}-T_f)$ of air where $T_{bi}$ and $T_f$ indicate temperatures of inlet air and phase change, respectively. And the deminishing rate of the recovered heat is higher for the higher heat rate.

  • PDF

머시응고에 대한 속도감쇠 기법이 정상상태 머시영역에 미치는 영향 (Effect of the Velocity Suppression Techniques for a Mushy Solidification on Steady-state Mushy Region)

  • 김우승;김덕수
    • 대한기계학회논문집B
    • /
    • 제22권12호
    • /
    • pp.1657-1668
    • /
    • 1998
  • In the analysis of a mushy solidification system with natural convection using a fixed grid method, the enthalpy method has been used to account for the release of latent heat. The variable viscosity, Darcy source, and hybrid methods have been employed for the velocity suppression in a mushy region. The choice of the values of solid viscosity and permeability constant in conjunction with the Darcy source term plays an important role in forming the location and shape of the phase boundaries. In this work the effects of these major parameters related to steady-state behavior in the system of mushy solidification are investigated through a simple test problem. The effective specific heat based on the spatial gradients of the enthalpy and temperature is adopted for the treatment of the release of latent heat. The effects of the Prandtl and Rayleigh numbers on the shape of mushy region are examined using the hybrid method.

개량된 등가비열법을 이용한 상변화 열전달의 수치해석 (Application of the Modified Equivalent Specific Method to the Phase Change Heat Transfer)

  • 목진호
    • 대한기계학회논문집B
    • /
    • 제29권7호
    • /
    • pp.814-819
    • /
    • 2005
  • The phase change heat transfer has been applied to the processes of machines as well as of manufacturing. The cycle in a heat exchanger includes the phase change phenomena of coolant for air conditioning, the solidification in casting process makes use of the characteristics of phase change of metal, and the welding also proceeds with melting and solidification. To predict the phase change processes, the experimental and numerical approaches are available. In the case of numerical analysis, the Enthalpy method is most widely applied to the phase change problem, comparing to the other numerical methods, i.e. the Equivalent Specific Heat method and the Temperature Recovery method. It's because that the Enthalpy method is accurate and straightforward. The Enthalpy method does not include any correction step while the correction of final temperature field is inevitable in the Equivalent Specific Heat method and the Temperature Recovery method. When the temperature field is to be used in the calculation, however, there must be converting process from enthalpy to temperature in the calculation scheme of Enthalpy method. In this study, an improved method for the Equivalent Specific Heat method is introduced whose method dose not include the correction steps and takes temperature as an independent variable so that the converting between enthalpy and temperature does not need any more. The improved method is applied to the solidification process of pure metal to see the differences of conventional and improved methods.