• 제목/요약/키워드: Solid-state compatibility

검색결과 17건 처리시간 0.028초

Investigation of Degradation Mechanism of Rabeprazole with Solid State Pharmaceutical Excipients

  • Ren, Shan;Tran, Thao Truong-Dinh;Tran, Phuong Ha-Lien;Rhee, Yun-Seok;Lee, Beom-Jin
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권6호
    • /
    • pp.367-372
    • /
    • 2010
  • Rabeprazole sodium (RPN) is known to be very unstable at acidic condition or some acidic pharmaceutical excipients such as acrylic acid polymer (carbomer 934) with carboxylic acids. Thus, degradation mechanism of binary blends of rabeprazole with pharmaceutical excipients in a solid state without using solvents at three different ratios (3:1, 1:1 and 1:3) was investigated using Fourier transform infrad (FTIR) spectroscopy. Alkalizer (MgO), neutral hydroxypropymethylcellulose (HPMC 4000) were also tested for comparison. The binary blends were stored under accelerated conditions ($40^{\circ}C$/75% relative humidity) for two weeks. The concentration of thioether rabeprazole from the binary blends with acidic carbomer 934 increased as the rabeprazole concentration decreased. In addition, the degradation half-life of rabeprazole as well as the relative peak area ratios obtained from FTIR spectra of S=O stretching at $1094.1\;cm^{-1}$ decreased consistently as the fraction of carbomer 934 increased due to its sensitivity between the basic benzimidazole nitrogen and carboxylic acid group of carbomer 934. The physical appearance also turned into strong brown color in the presence of carbomer 934. In contrast, there were no significant changes in the degradation kinetics of rabeprazole with MgO and HPMC 4000 in a solid state. This present study demonstrated that the solid-state compatibility test with the aid of HPLC chromatographic and FTIR spectral analyses could offer a valuable methodology to select suitable pharmaceutical excipients and to elucidate the degradation mechanism of RPN for drug formulations at the early formulation stages.

Progress of High-k Dielectrics Applicable to SONOS-Type Nonvolatile Semiconductor Memories

  • Tang, Zhenjie;Liu, Zhiguo;Zhu, Xinhua
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권4호
    • /
    • pp.155-165
    • /
    • 2010
  • As a promising candidate to replace the conventional floating gate flash memories, polysilicon-oxide-nitride-oxidesilicon (SONOS)-type nonvolatile semiconductor memories have been investigated widely in the past several years. SONOS-type memories have some advantages over the conventional floating gate flash memories, such as lower operating voltage, excellent endurance and compatibility with standard complementary metal-oxide-semiconductor (CMOS) technology. However, their operating speed and date retention characteristics are still the bottlenecks to limit the applications of SONOS-type memories. Recently, various approaches have been used to make a trade-off between the operating speed and the date retention characteristics. Application of high-k dielectrics to SONOS-type memories is a predominant route. This article provides the state-of-the-art research progress of high-k dielectrics applicable to SONOS-type nonvolatile semiconductor memories. It begins with a short description of working mechanism of SONOS-type memories, and then deals with the materials' requirements of high-k dielectrics used for SONOS-type memories. In the following section, the microstructures of high-k dielectrics used as tunneling layers, charge trapping layers and blocking layers in SONOS-type memories, and their impacts on the memory behaviors are critically reviewed. The improvement of the memory characteristics by using multilayered structures, including multilayered tunneling layer or multilayered charge trapping layer are also discussed. Finally, this review is concluded with our perspectives towards the future researches on the high-k dielectrics applicable to SONOS-type nonvolatile semiconductor memories.

Electrochemical Properties of $LiM_xFe_{1_x}PO_4$ Cathode Materials By Solid-state Reaction

  • Wang, Wan-Lin;Park, Kyung-Hee;Gil, Hal-Bon;Park, Bok-Kee
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.212-212
    • /
    • 2010
  • Recently, lithium transition metal phosphates with an ordered olivine-type structure, $LiMPO_4$ (M=Fe, Mn, Ni, and Co), have attracted extensive attention due to a high theoretical specific capacity (170 mAh/g). The $LiMPO_4$ is the most attractive because of its high stability, low cost, high compatibility with environment. However, it is difficult to attain its full capacity because its electronic conductivity is very low, and diffusion of Li-ion in the olivine structure is slow and the supervalue cation doping was used. In this research, we are used the supervalue cation doping methode such as Cu, Ti, and Mg were partially replace the Fe. The cycling performance resulted of the used $LiM_xFe_{1_x}PO_4$ cathode materials for lithium batteries exhibit excellent high capacity than $LiFePO_4$/Li cells.

  • PDF

새로운 플루오라이트 구조 강유전체의 Electrocaloric Effect (Electrocaloric Effect in Emerging Fluorite-Structure Ferroelectrics)

  • 양건;박주용;이동현;박민혁
    • 한국재료학회지
    • /
    • 제30권9호
    • /
    • pp.480-488
    • /
    • 2020
  • The electrocaloric effect can be observed in pyroelectric materials based on conversion between electrical and thermal energy, and can be utilized for the future environment-friendly refrigeration technology. Especially, a strong electrocaloric effect is expected in materials in which field-induced phase transition can be achieved. Emerging fluorite-structure ferroelectrics such as doped hafnia and zirconia, first discovered in 2011, are considered the most promising materials for next-generation semiconductor devices. Besides application of fluorite-structure ferroelectrics for semiconductor devices based on their scalability and CMOS-compatibility, field-induced phase transition has been suggested as another interesting phenomenon for various energy-related applications such as solid-state cooling with electrocaloric effect as well as energy conversion/storage and IR/piezoelectric sensors. Especially, their giant electrocaloric effect is considered promising for solid-state-cooling. However, the electrocaloric effect of fluorite-structure oxides based on field-induced phase transition has not been reviewed to date. In this review, therefore, the electrocaloric effect accompanied by field-induced phase transition in fluorite-structure ferroelectrics is comprehensively reviewed from fundamentals to potential applications.

고기능 고분자 복합재의 고상계면 현상에 대한 연구(I) -액정 Polyester와 Poly(ε-caprolactam) Alloy의 제조와 그 특성 (Solid State Interfacial Phenomena of High Performance Two Phase Polymer System(I) -Preparation and Characteristics of Liquid Crystalline Polyester and Poly(ε-caprolactam) Alloy-)

  • 강두환;강호종;정효성;이용무
    • 공업화학
    • /
    • 제8권1호
    • /
    • pp.49-58
    • /
    • 1997
  • 고탄성, 고강도의 특성을 가지고 있는 열방성 액정고분자인 Vectra(LCP)와 무정형 poly(${\varepsilon}-caprolactam$) (PA)의 합금에서 LCP의 함량이 10parts 미만에서는 LCP의 네마틱 상의 유리전이온도가 $4{\sim}5^{\circ}C$ 정도 낮은 족으로 이동되나 그 이상의 함량에서는 유리전이온도의 이동을 볼 수 없는 것으로 보아 부분적인 상용성만 나타나게 됨을 확인하였다. PA/LCP 합금에서 LCP의 함량을 증가시켜 주기위해 N-g1ycinylmaleimide(GMI)를 합성한 다음 이를 methylmetacrylate(MMA)와 공중합시켜 poly(glycinylmaleimide-co-methylmetacrylate)[poly(GMI-co-MMA)]공중합체를 합성하고 이를 상용화제로 사용하였으며 이를 사용하는 경우 LCP 30parts 이상을 혼합하여도 혼화성이 있음을 알 수 있었고 이들 합금의 상용성은 합금의 각종 혼합비율에 따른 열적 특성과 rheological 특성을 측정하여 확인하고 고속충격특성과 굴곡강도 및 탄성율을 측정하였다.

  • PDF

LATP 내 비정상 입자성장이 이온 전도도에 미치는 영향 (Effect of Abnormal Grain Growth on Ionic Conductivity in LATP)

  • 최형익;한윤수
    • 한국분말재료학회지
    • /
    • 제31권1호
    • /
    • pp.23-29
    • /
    • 2024
  • This study investigates the effect of the microstructure of Li1.3Al0.3Ti1.7(PO4)3 (LATP), a solid electrolyte, on its ionic conductivity. Solid electrolytes, a key component in electrochemical energy storage devices such as batteries, differ from traditional liquid electrolytes by utilizing solid-state ionic conductors. LATP, characterized by its NASICON structure, facilitates rapid lithium-ion movement and exhibits relatively high ionic conductivity, chemical stability, and good electrochemical compatibility. In this study, the microstructure and ionic conductivity of LATP specimens sintered at 850, 900, and 950℃ for various sintering times are analyzed. The results indicate that the changes in the microstructure due to sintering temperature and time significantly affect ionic conductivity. Notably, the specimens sintered at 900℃ for 30 min exhibit high ionic conductivity. This study presents a method to optimize the ionic conductivity of LATP. Additionally, it underscores the need for a deeper understanding of the Li-ion diffusion mechanism and quantitative microstructure analysis.

리튬고분자 이차전지의 전기적 전기화학적 특성

  • 박수길;박종은;손원근;류부형;이주성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.159-162
    • /
    • 1998
  • The new type polymer electrolyte composed of polyacrylonitrile(PAN) baed polymer electrolyte contain LiClO$_4$-EC/PC and LiPF$\sub$6/-EC/PC were developed for the weightless and long or life time of lithium polymer battery system with using polyaniline electrode. The gel type electrolytes were prepared by PAN at different lithium salts in the glove box. We prepared for polymer electrolyte with knife casting method. The minimum thickness of PAN gel electrolyte for the slim type is about <400∼500$\mu\textrm{m}$. These gel electrolytes showed good compatibility with lithium electrode. The test cell of Li/polymer electrolyte/Lithium cobalt oxide solid state cell which was prepared by different lithium salt was researched by electrochemical technique. Resistance of polymer electrolyte which consist of LiClO$_4$ is more less than that of LiPF$\sub$6/ and cycle life is more longer than that of LiPF$\sub$6/.

  • PDF

Electric and Electrochemical Characteristic of PMMA-PEO Gel Electrolyte for Rechargeable Lithium Battery

  • 박수길;박종은;이홍기;이주성
    • 한국전기전자재료학회논문지
    • /
    • 제11권10호
    • /
    • pp.768-772
    • /
    • 1998
  • The new type polymer electrolyte composed of polymethyl methacrylate(PMMA) - polyethy leneoxide(PEO) contain $LiClO_4$ -EC/PC was developed for the weightless and long or life time of lithium polymer batery system with using polyaniline electrode. the gel type electrolytes were prepared by PMMA with PEO at different lithium salts in the glove box. The minimum thickness of PMMA-PEO gel electrolyte for the slim type is about(400~450$\mu\textrm{m}$. These gel electrolyte showed good compatibility with lithium electrode. The test cell Li/polymer electrolyte/polyaniline solid state cell which was prepared by different lithium salt was researched by electrochemical technique.

  • PDF

Characterization of the Physicochemical Properties of KR-31378

  • Sohn, Young-Taek;Park, Bo-Ye
    • Archives of Pharmacal Research
    • /
    • 제26권7호
    • /
    • pp.526-531
    • /
    • 2003
  • KR-31378 is a new drug candidate intended for the use in the prevention of ischemia-reperfusion damage. The objective of this preformulation study was to determine the physicochemical properties of KR-31378. The n-octanol to water partition coefficients of KR-31378 were 0.0504 at pH 3 and 0.8874 at pH 10. Accelerated stability of KR-31378 in solution and solid state was studied at 5, 40, $60^{\circ}C$. The stability testing indicated that the t90 for the drug in solid was estimated to be 2 years and 128.6 days at $25^{\circ}C$, while the that in aquesou solution was 68.6 days at $25^{\circ}C$. The KR-31378 was also found to be unstable under the relative humidity of 76%, probably because of the hygroscopic nature of the drug. In order to study compatibility of KR-31378 with typical excipients, potential change in differential scanning calorimetry spectrum was studied in 1:1 binary mixtures of KR-31378 and Aerosil, Avicel, Eudragit, lactose, PEG, talc, CMC, PVP, starch. As a result, CMC, PVP, and starch were found to be incompatible with KR-31378, indicating the addition of these excipients may complicate the manufacturing of the formulation for the drug. Particle size distribution of KR-31378 powder was in the size range of 9-93 $\mu$ m with the mean particle size of 37.9 $\mu$ m. The flowability of KR-31378 was apparently inadequate, indicating the granulation may be necessary for the processing of the drug to solid dosage forms. Crystallization of the drug with a number of organic solvents did not lead a crystalline polymorphism. In addition, dissolution of the drug from the powder was adequately rapid at $37^{\circ}C$ in water.

고성능 고체산화물 연료전지를 위한 이중층 전해질 전략 (A brief review of the bilayer electrolyte strategy to achieve high performance solid oxide fuel cells)

  • 박정화;김도엽;김경준;배경택;이강택
    • 세라미스트
    • /
    • 제23권2호
    • /
    • pp.184-199
    • /
    • 2020
  • The solid oxide fuel cells (SOFCs) are the one of the most promising energy conversion devices which can directly convert chemical energy into electric power with high efficiency and low emission. The lowering operating temperature below 800 ℃ has been considered as the mostly considerable research and development for commercialization. The major issue is to maintain reasonably high performance of SOFCs at reduced temperatures due to increment of polarization resistance of electrodes and electrolyte. Thus, the alternative materials with high catalytic activities and fast oxygen ion conductivity are required. For recent advances in electrolyte materials and technology, newly designed, highly conductive electrolyte materials and structural engineering of them provide a new path for further reduction in ohmic polarization resistance from electrolytes. Here, a powerful strategy of the bilayer concept with various oxide electrolytes of SOFCs are briefly reviewed. These recent developments also highlight the need for electrolytes with greater conductivity to achieve a high performance, thus providing a useful guidance for the rational design of cell structures for SOFCs. Moreover, cell design, materials compatibility, processing methods, are discussed, along with their role in determining cell performance. Results from state-of-the-art SOFCs are presented, and future prospects are discussed.