DOI QR코드

DOI QR Code

Effect of Abnormal Grain Growth on Ionic Conductivity in LATP

LATP 내 비정상 입자성장이 이온 전도도에 미치는 영향

  • Hyungik Choi (Department of Materials Science and Engineering, Korea University) ;
  • Yoonsoo Han (Ceramic Total Solution Center, Korea Institute of Ceramic Engineering and Technology)
  • 최형익 (고려대학교 신소재공학과) ;
  • 한윤수 (한국세라믹기술원 세라믹종합솔루션센터)
  • Received : 2023.12.13
  • Accepted : 2024.01.16
  • Published : 2024.02.28

Abstract

This study investigates the effect of the microstructure of Li1.3Al0.3Ti1.7(PO4)3 (LATP), a solid electrolyte, on its ionic conductivity. Solid electrolytes, a key component in electrochemical energy storage devices such as batteries, differ from traditional liquid electrolytes by utilizing solid-state ionic conductors. LATP, characterized by its NASICON structure, facilitates rapid lithium-ion movement and exhibits relatively high ionic conductivity, chemical stability, and good electrochemical compatibility. In this study, the microstructure and ionic conductivity of LATP specimens sintered at 850, 900, and 950℃ for various sintering times are analyzed. The results indicate that the changes in the microstructure due to sintering temperature and time significantly affect ionic conductivity. Notably, the specimens sintered at 900℃ for 30 min exhibit high ionic conductivity. This study presents a method to optimize the ionic conductivity of LATP. Additionally, it underscores the need for a deeper understanding of the Li-ion diffusion mechanism and quantitative microstructure analysis.

Keywords

Acknowledgement

이 연구는 2023년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(RS-2023-00243593).

References

  1. Q. Ma, Q. Xu, C.-L. Tsai, F. Tietz and O. Guillon: J. Am. Ceram. Soc., 99 (2016) 410.
  2. H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka and G. Adachi: J.Electrochem. Soc., 137 (1990) 1023.
  3. P. Knauth: Solid State Ionics, 180 (2009) 911. https://doi.org/10.1016/j.ssi.2009.03.022
  4. R. DeWees and H. Wang: ChemSusChem, 12 (2019) 3713.
  5. G. Y. Adachi, N. Imanaka and H. Aono: Adv. Mater., 8 (1996) 127.
  6. T. Hupfer, E. C. Bucharsky, K. G. Schell and A. Senyshyn, M. Monchak, M. J. Hoffmann and H. Ehrenberg: Solid State Ionics, 288 (2016) 235. https://doi.org/10.1016/j.ssi.2016.01.036
  7. K. Yamazaki, S. H. Risbud, H. Aoyama and K. Shoda: J. Mater. Process. Technol., 56 (1996) 955.
  8. M. Omori: Mater. Sci. Eng., A287 (2000) 183.
  9. Z. A. Munir, U. A. Tamburini and M. Ohyanagi: J. Mater. Sci., 41 (2006) 763.
  10. E. C. Bucharsky, K. G. Schell, A. Hintennach and M. J. Hoffmann: Solid State Ionics, 274 (2015) 77. https://doi.org/10.1016/j.ssi.2015.03.009
  11. B. Zhang, Z. Lin, H. Dong, L.-W. Wang and F. Pan: J. Mater. Chem. A, 8 (2020) 342.