• Title/Summary/Keyword: Solid oxide cells

Search Result 330, Processing Time 0.023 seconds

Functional Analysis of Electrode and Small Stack Operation in Solid Oxide Fuel Cell (고체산화물 연료전지의 전극과 스택운영의 기능적 분석)

  • Bae, Joong-Myeon;Kim, Ki-Hyun;Ji, Hyun-Jin;Kim, Jung-Hyun;Kang, In-Yong;Lim, Sung-Kwang;Yoo, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.812-822
    • /
    • 2006
  • This study amis to investigate the functional analysis of anode and cathode materials in Anode supported Solid Oxide Fuel Cell. The concentration polarization of single cell was investigated with CFD (Computational Fluid Dynamics) method for the case of the different morphology by using four types of unit cell and discussed to reduce the concentration polarization. The concentration polarization at anode side effected the voltage loss in Anode supported Solid Oxide Fuel Cell and increased contact areas between fuel gas and anode side could reduce the concentration polarization. For intermediate temperature operation, Anode-supported single cells with thin electrolyte layer of YSZ (Yttria-Stabilized Zirconia) were fabricated and short stacks were built and evaluated. We also developed diesel and methane autothermal reforming (ATR) reactors in order to provide fuels to SOFC stacks. Influences of the $H_2O/C$ (steam to carbon ratio), $O_2/C$ (oxygen to carbon ratio) and GHSV (Gas Hourly Space Velocity) on performances of stacks have been investigated. Performance of the stack operated with a diesel reformer was lower than with using hydrogen as a fuel due to lower Nernst voltage and carbon formation at anode side. The stack operated with a natural gas reformer showed similar performances as with using hydrogen. Effects of various reformer parameters such as $H_2O/C$ and $O_2/C$ were carefully investigated. It is found that $O_2/C$ is a sensitive parameter to control stack performance.

Study on safety performance evaluation of stationary SOFC stack (건물용 고체산화물연료전지 스택 안전성능평가 연구)

  • Park, Tae Seong;Lee, Eun Kyung;Lee, Seung Kuk
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.1-12
    • /
    • 2018
  • The code and standards related to fuel cells were analyzed to derive the SOFC(Solid Oxide Fuel Cell) stack safety performance evaluation items and evaluation methode. Safety performance evluation of the SOFC stack was tested by quoting derived test items. The stack used in the test is an anode-supported type 2 Cell stack (Active surface area : 220cm) manufactured by MICO Inc, and SOFC stack safety performance evaluation system used for the test is self-manufactured. We conducted a leakage test, current voltage characteristic test, rated output test, and power response characteristics test. In the safety performance evaluation test, the stack showed no gas leakage, the maximum output and rated output was recorded to 65.6 W(1.41 V, 46.5 A, $422mA/cm^2$), 62.3 W(1.57 V, 40 A, $363mA/cm^2$). In the power response characteristics test verified that the output is kept stable within two seconds. At the maximum load (40 A) and the minimum load (8 A), the output was recorded 62 W and 16W in $750^{\circ}C$. This study will contribute to the universalization and to provide much safe environment of operating the solid oxide fuel cell system.

Anode-supported Solid Oxide Fuel Cells Prepared by Spin-coating (Spin-coating 공정에 의해 제조된 음극 지지형 고체산화물 연료전지)

  • Yu, Ji-Haeng;Lee, Hee-Lak;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.733-739
    • /
    • 2007
  • NiO-YSZ anode-supported single cell was prepared by spin-coating YSZ and LSM slurries as electrolyte and cathode, respectively. Dense YSZ electrolyte film was successfully prepared on the porous NiO-YSZ anode substrate by tuning pre-sintering temperature of NiO-YSZ and co-firing temperature. The thickness of YSZ film was controlled by the solid content of slurry and coating cycles. The experimental conditions affecting on the thickness of YSZ film was discussed. Single cells with the active electrode area ${\sim}0.8\;cm^2$ were prepared by spin-coating the cathode layers of LSM-YSZ mixture and LSM consequently as well. The effects of the pre-sintering temperature and thus the microstructure of NiO-YSZ substrate on the current-voltage characteristics of co-fired cell were investigated.

Electrochemical Properties of Cathode according to the Type of Sulfide Electrolyte and the Application of Surface Coating

  • Yoon, Da Hye;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.126-136
    • /
    • 2021
  • The electrochemical performance of all-solid-state cells (ASSCs) based on sulfide electrolytes is critically affected by the undesirable interfacial reactions between oxide cathodes and sulfide electrolytes because of the high reactivity of sulfide electrolytes. Based on the concept that the interfacial reactions are highly dependent on the type of sulfide electrolyte, the electrochemical properties of the ASSCs prepared using three types of sulfide electrolytes were observed and compared. The Li2MoO4-LiI coating layer was also introduced to suppress the interfacial reactions. The cells using argyrodite electrolyte exhibited a higher capacity and Coulombic efficiency than the cells using 75Li2S-22P2S5-3Li2SO4 and Li7P3S11 electrolytes, indicating that the argyrodite electrolyte is less reactive with cathodes than other electrolytes. Moreover, the introduction of Li2MoO4-LiI coating on the cathode surface significantly enhanced the electrochemical performance of ASSCs because of the protection of coating layer. Pulverization of argyrodite electrolyte is also effective in increasing the capacity of cells because the smaller size of electrolyte particles improved the contact stability between the cathode and the sulfide electrolyte. The cyclic performance of cells was also enhanced by pulverized electrolyte, which is also associated with improved contact stability at the cathode/electrolyte. These results show that the introduction of Li2MoO4-LiI coating and the use of pulverized sulfide electrolyte can exhibit a synergic effect of suppressed interfacial reaction by the coating layer and improved contact stability owing to the small particle size of electrolyte.

Self-Regeneration of Intelligent Perovskite Oxide Anode for Direct Hydrocarbon-Type SOFC by Nano Metal Particles of Pd Segregated (Pd 나노입자의 자가 회복이 가능한 지능형 페로브스카이트 산화물 음극의 직접 탄화수소계 SOFC 성능 평가)

  • Oh, Mi Young;Ishihara, Tatsumi;Shin, Tae Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.345-350
    • /
    • 2018
  • Nanomaterials have considerable potential to solve several key challenges in various electrochemical devices, such as fuel cells. However, the use of nanoparticles in high-temperature devices like solid-oxide fuel cells (SOFCs) is considered problematic because the nanostructured surface typically prepared by deposition techniques may easily coarsen and thus deactivate, especially when used in high-temperature redox conditions. Herein we report the synthesis of a self-regenerated Pd metal nanoparticle on the perovskite oxide anode surface for SOFCs that exhibit self-recovery from their degradation in redox cycle and $CH_4$ fuel running. Using Pd-doped perovskite, $La(Sr)Fe(Mn,Pd)O_3$, as an anode, fairly high maximum power densities of 0.5 and $0.2cm^{-2}$ were achieved at 1,073 K in $H_2$ and $CH_4$ respectively, despite using thick electrolyte support-type cell. Long-term stability was also examined in $CH_4$ and the redox cycle, when the anode is exposed to air. The cell with Pd-doped perovskite anode had high tolerance against re-oxidation and recovered the behavior of anodic performance from catalytic degradation. This recovery of power density can be explained by the surface segregation of Pd nanoparticles, which are self-recovered via re-oxidation and reduction. In addition, self-recovery of the anode by oxidation treatment was confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM).

Fuel cell based CHP technologies for residential sector (연료전지와 마이크로 열병합 발전기술)

  • Son, Young Mok
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.251-258
    • /
    • 2016
  • This article reports current status of micro fuel cell-combined heat and power (${\mu}FC$-CHP) systems which utilize both power and heat generated by fuel cells. There are several options for constructing CHP systems and among them, fuel cells are the most useful and their total energy efficiency combining heat and power can reach up to about 90%. Fuel cells are classified as five types based on the electrolyte, but the most suitable fuel cell types for the ${\mu}FC$-CHP system are proton exchange membrane fuel cells (PEMFCs) and solid oxide fuel cells (SOFCs). ${\mu}FC$-CHP systems have several advantages such as decrease of the transmission-distribution loss, reduced costs of electricity due to distributed power generation, and environmental-friendliness owing to zero emission. The main drawback of the ${\mu}FC$-CHP systems is the high initial investment, however, it keeps decreasing as the technology development reduces production costs. Currently, Japan is the most leading country of the ${\mu}FC$-CHP market, however, Korea tries to expand the market by planning the deployment of 1 million units of ${\mu}FC$-CHP systems and governmental subsidiary supporting of half of the install price. In this report, integration technologies for connecting FC and CHP, and technology trends of leading countries are presented as well.

A Study on Solid-Phase Epitaxy Emitter in Silicon Solar Cells (고상 성장법을 이용한 실리콘 태양전지 에미터 형성 연구)

  • Kim, Hyunho;Ji, Kwang-Sun;Bae, Soohyun;Lee, Kyung Dong;Kim, Seongtak;Park, Hyomin;Lee, Heon-Min;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.80-84
    • /
    • 2015
  • We suggest new emitter formation method using solid-phase epitaxy (SPE); solid-phase epitaxy emitter (SEE). This method expect simplification and cost reduction of process compared with furnace process (POCl3 or BBr3). The solid-phase epitaxy emitter (SEE) deposited a-Si:H layer by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) on substrate (c-Si), then thin layer growth solid-phase epitaxy (SPE) using rapid thermal process (RTP). This is possible in various emitter profile formation through dopant gas ($PH_3$) control at deposited a-Si:H layer. We fabricated solar cell to apply solid-phase epitaxy emitter (SEE). Its performance have an effect on crystallinity of phase transition layer (a-Si to c-Si). We confirmed crystallinity of this with a-Si:H layer thickness and annealing temperature by using raman spectroscopy, spectroscopic ellipsometry and transmission electron microscope. The crystallinity is excellent as the thickness of a-Si layer is thin (~50 nm) and annealing temperature is high (<$900^{\circ}C$). We fabricated a 16.7% solid-phase epitaxy emitter (SEE) cell. We anticipate its performance improvement applying thin tunnel oxide (<2nm).

Transient Liquid Phase Sintering of LCCC(La0.8Ca0.2Cr0.9Co0.1O3-δ) with the Addition of CaCrO4 (CaCrO4 첨가에 따른 LCCC(La0.8Ca0.2Cr0.9Co0.1O3-δ)의 전이액상소결거동)

  • Lee, Ho-Chang;Kang, Bo-Kyung;Lee, Joon-Hyung;Heo, Young-Woo;Kim, Jae-Yuk;Kim, Jeong-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.2
    • /
    • pp.197-203
    • /
    • 2012
  • In this study, in order to improve densification of $La_{0.8}Ca_{0.2}Cr_{0.9}Co_{0.1}O_{3-\delta}$ (LCCC), which is known for one of the most proper candidate interconnector materials in the solid oxide fuel cells, $CaCrO_4$ was prepared via solid oxide synthesis route and added to the LCCC with different amount and particle sizes. As the amount of the $CaCrO_4$ increased, porosity of the sintered samples increased, and the pore size was proportional to the particle size of the $CaCrO_4$. This supports the fact that the $CaCrO_4$ phase forms liquid during sintering and permeate into the matrix leaving behind large pores. Then the liquid reacts with the matrix through the solid solution. However, when the samples were sintered with a slow ramp up rates, the porosity decreased. This is thought to be caused by the progressive solid solution of $CaCrO_4$ before the temperature reach to the melting temperature and forms a fluent amount of liquids. The sintering behavior of the LCCC with the addition of $CaCrO_4$ was analyzed through the transient liquid phase sintering on the basis of the microstructure observation and phase identification by x-ray diffraction.

Mechanical and Electrical Performance of Anode-Supported Solid Oxide Fuel Cells during Thermal Cyclic Operation (열 사이클에 따른 고체산화물 연료전지의 기계적 및 전기적 특성)

  • Yang, Su-Yong;Park, Jae-Keun;Lee, Tae-Hee;Yu, Jung-Dae;Yoo, Young-Sung;Park, Jin-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.775-780
    • /
    • 2006
  • Mechanical and electrical performance of anode-supported SOFC single cells were analyzed after thermal cyclic operation. The experiments of thermal cyclic cell-operation were carried out four times and performance of each cell was measured at different temperatures of 650, 700, and $750^{\circ}C$, respectively. As increasing the number of thermal cycle test, single cells showed poor I-V characteristics and lower 4-point bending strength. The anode polarization was also measured by AC-impedance analysis. The observation of the microstructure of the anodes in single cells proved that the average particle size of Ni decreased and the porosity of anode increased. It is thought that the thermal cycle caused the degradation of performance of single cells by reducing the density of three-phase boundary region.

Effect of the Pore Structure on the Anodic Property of SOFC (SOFC 음극의 기공구조가 음극특성에 미치는 영향)

  • 허장원;이동석;이종호;김재동;김주선;이해원;문주호
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.86-91
    • /
    • 2002
  • Solid Oxide Fuel Cells (SOFC) are of great interest of next generation energy conversion system due to their high energy efficiency and environmental friendliness. The basic SOFC unit consists of anode, cathode and solid electrolyte. Among these components, anode plays the most important role for the oxidation of fuel to generate electricity and also behaves as a substrate of the whole cell. It is normally requested that the anode materials should have the high electrical conductivity and gas permeability to reduce the polarization loss of the cell. In this study, the effect of pore former on the microstructure of anode substrate was investigated and thus on the electrical conductivity and the gas permeability. According to the results, microstructure and electrical conductivity of anode substrate were greatly influenced by the shape of pore former and especially by the anisotrpy of the pore former. The use of anisotropic pore former is supposed to deteriorate the cell performance by which the electrical conduction path is disconnected but also the effective gas diffusion path for the fuel is reduced.