DOI QR코드

DOI QR Code

Self-Regeneration of Intelligent Perovskite Oxide Anode for Direct Hydrocarbon-Type SOFC by Nano Metal Particles of Pd Segregated

Pd 나노입자의 자가 회복이 가능한 지능형 페로브스카이트 산화물 음극의 직접 탄화수소계 SOFC 성능 평가

  • Oh, Mi Young (Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Ishihara, Tatsumi (Department of Applied Chemistry, Kyushu University) ;
  • Shin, Tae Ho (Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology (KICET))
  • 오미영 (한국세라믹기술원 에너지환경소재본부) ;
  • ;
  • 신태호 (한국세라믹기술원 에너지환경소재본부)
  • Received : 2018.05.02
  • Accepted : 2018.05.28
  • Published : 2018.07.01

Abstract

Nanomaterials have considerable potential to solve several key challenges in various electrochemical devices, such as fuel cells. However, the use of nanoparticles in high-temperature devices like solid-oxide fuel cells (SOFCs) is considered problematic because the nanostructured surface typically prepared by deposition techniques may easily coarsen and thus deactivate, especially when used in high-temperature redox conditions. Herein we report the synthesis of a self-regenerated Pd metal nanoparticle on the perovskite oxide anode surface for SOFCs that exhibit self-recovery from their degradation in redox cycle and $CH_4$ fuel running. Using Pd-doped perovskite, $La(Sr)Fe(Mn,Pd)O_3$, as an anode, fairly high maximum power densities of 0.5 and $0.2cm^{-2}$ were achieved at 1,073 K in $H_2$ and $CH_4$ respectively, despite using thick electrolyte support-type cell. Long-term stability was also examined in $CH_4$ and the redox cycle, when the anode is exposed to air. The cell with Pd-doped perovskite anode had high tolerance against re-oxidation and recovered the behavior of anodic performance from catalytic degradation. This recovery of power density can be explained by the surface segregation of Pd nanoparticles, which are self-recovered via re-oxidation and reduction. In addition, self-recovery of the anode by oxidation treatment was confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM).

Keywords

References

  1. R. F. Service, Science, 285, 682 (1999). [DOI: https://doi.org/10.1126/science.285.5428.682]
  2. N. Q. Minh, Solid State Ionics, 174, 271 (2004). [DOI: https://doi.org/10.1016/j.ssi.2004.07.042]
  3. S. C. Singhal, Solid State Ionics, 405, 152 (2002). [DOI: https://doi.org/10.1016/S0167-2738(02)00349-1]
  4. T. Ishihara, Perovskite Oxide for Solid Oxide Fuel Cells (Springer, New York, 2009) p. 1-16. [DOI: https://doi.org/ 10.1007/978-0-387-77708-5_1]
  5. M. D. Gross, J. M. Vohs, and R. J. Gorte, J. Mater. Chem., 17, 3071 (2007). [DOI: https://doi.org/10.1039/B702633A]
  6. Y. H. Huang, R. I. Dass, Z. L. Xing, and J. B. Goodenough, Science, 312, 254 (2006). [DOI: https://doi.org/ 10.1126/science.1125877]
  7. Y. H. Huang, G. Liang, M. Croft, M. Lehtimaki, M. Karppinen, and J. B. Goodenough, Chem. Mater., 21, 2319 (2009). [DOI: https://doi.org/10.1021/cm8033643]
  8. G. Kim, G. Corre, J.T.S. Irvine, J. M. Vohs, and R. J. Gorte, Electrochem. Solid-State Lett., 11, B16 (2008). [DOI: https://doi.org/10.1149/1.2817809]
  9. Q. Liu, X. Dong, G. Xiao, F. Zhao, and F. Chen, Adv. Mater., 22, 5478 (2010). [DOI: https://doi.org/10.1002/adma. 201001044]
  10. S. McIntosh and R. J. Gorte, Chem. Rev., 104, 4845 (2004). [DOI: https://doi.org/10.1021/cr020725g]
  11. S. Tao and J.T.S. Irvine, Nat. Mater., 2, 320 (2003). [DOI: https://doi.org/10.1038/nmat871]
  12. S. Tao and J.T.S. Irvine, J. Electrochem. Soc., 151, A252 (2004). [DOI: https://doi.org/10.1149/1.1639161]
  13. S. Tao, J.T.S. Irvine, and S. M. Plint, J. Phys. Chem. B, 110, 21771 (2006). [DOI: https://doi.org/10.1021/jp062376q]
  14. C. Yang, Z. Yang, C. Jin, G. Xiao, F. Chen, and M. Han, Adv. Mater., 24, 1439 (2012). [DOI: https://doi.org/ 10.1002/adma.201104852]
  15. T. H. Shin, S. Ida, and T. Ishihara, J. Am. Chem. Soc., 133, 19399 (2011). [DOI: https://doi.org/10.1021/ja206278f]
  16. G. Kim, S. Lee, J. Y. Shin, G. Corre, J.T.S. Irvine, J. M. Vohs, and R. J. Gorte, Electrochem. Solid-State Lett., 12, B48 (2009). [DOI: https://doi.org/10.1149/1.3065971]
  17. T. S. Oh, A. S. Yu, L. Adijanto, R. J. Gorte, and J. M. Vohs, J. Power Sources, 262, 207 (2014). [DOI: https://doi.org/10.1016/j.jpowsour.2014.03.141]
  18. J. M. Vohs and R. J. Gorte, Adv. Mater., 21, 943 (2009). [DOI: https://doi.org/10.1002/adma.200802428]
  19. A. N. Busawon, D. Sarantaridis, and A. Atkinson, Electrochem. Solid-State Lett., 11, B186 (2008). [DOI: https://doi.org/10.1149/1.2959078]
  20. H. Tanaka, M. Taniguchi, N. Kajita, M. Uenishi, I. Tan, N. Sato, K. Narita, and M. Kimura, Top. Catal., 30, 389 (2004). [DOI: https://doi.org/10.1023/B:TOCA.0000029780. 70319.36]
  21. H. Tanaka, M. Uenishi, M. Taniguchi, I. Tan, K. Narita, M. Kimura, K. Kaneko, Y. Nishihata, and J. I. Mizuki, Catal. Today, 117, 321 (2006). [DOI: https://doi.org/10.1016/ j.cattod.2006.05.029]
  22. D. M. Bierschenk, E. Potter-Nelson, C. Hoel, Y. Liao, L. Marks, K. R. Poeppelmeier, and S. A. Barnett, J. Power Sources, 196, 3089 (2011). [DOI: https://doi.org/10.1016/ j.jpowsour.2010.12.050]
  23. Y. Nishihata, J. Mizuki, T. Akao, H. Tanaka, M. Uenishi, M. Kimura, T. Okamoto, and N. Hamada, Nature, 418, 164 (2002). [DOI: https://doi.org/10.1038/nature00893]
  24. Y. Nishihata, J. Mizuki, H. Tanaka, M. Uenishi, and M. Kimura, J. Phys. Chem. Solids, 66, 274 (2005). [DOI: https://doi.org/10.1016/j.jpcs.2004.06.090]
  25. I. Hamada, A. Uozumi, Y. Morikawa, A. Yanase, and H. Katayama-Yoshida, J. Am. Chem. Soc., 133, 18506 (2011). [DOI: https://doi.org/10.1021/ja110302t]
  26. T. Ishihara, T. H. Shin, P. Vanalabhpatana, K. Yonemoto, and M. Matsuka, Electrochem. Solid-State Lett., 13, B95 (2010). [DOI: https://doi.org/10.1149/1.3430667]
  27. T. Ishihara, S. Fukui, M. Enoki, and H. Matsumoto, J. Electrochem. Soc., 153, A2085 (2006). [DOI: https://doi.org/ 10.1149/1.2344830]
  28. T. H. Shin, S. Ida, and T. Ishihara, J. Am. Chem. Soc., 133, 19399 (2011). [DOI: https://doi.org/10.1021/ja206278f]
  29. Y. S. Chung, T. Kim, T. H. Shin, H. Yoon, S. Park, N. M. Sammes, W. B. Kim, and J. S. Chung, J. Mater. Chem. A, 5, 6437 (2017). [DOI: https://doi.org/10.1039/ C6TA09692A]
  30. J. Mizusaki, T. Sasamoto, W. R. Cannon, and H. K. Bowen, J. Am. Ceram. Soc., 65, 363 (1982). [DOI: https://doi.org/10.1111/j.1151-2916.1982.tb10485.x]
  31. J. Mizusaki, T. Sasamoto, W. R. Cannon, and H. K. Bowen, J. Am. Ceram. Soc., 66, 247 (1983). [DOI: https://doi.org/10.1111/j.1151-2916.1983.tb15707.x]