DOI QR코드

DOI QR Code

Surface Passivation of Tunnel Silicon Oxide Grown by Ozone Oxidation

오존 산화에 의해 형성된 터널 실리콘 산화막의 표면 패시베이션

  • Baek, Jong Hoon (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Cho, Young Joon (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Chang, Hyo Sik (Graduate School of Energy Science and Technology, Chungnam National University)
  • 백종훈 (충남대학교 에너지과학기술대학원) ;
  • 조영준 (충남대학교 에너지과학기술대학원) ;
  • 장효식 (충남대학교 에너지과학기술대학원)
  • Received : 2018.03.05
  • Accepted : 2018.04.13
  • Published : 2018.07.01

Abstract

In order to achieve a high efficiency for the silicon solar cell, a passivation characteristic that minimizes the electrical loss at a silicon interface is required. In this paper, we evaluated the applicability of the oxide film formed by ozone for the tunnel silicon oxide film. To this end, we fabricated the silicon oxide film by changing the condition of ozone oxidation and compared the characteristics with the oxide film formed by the existing nitric acid solution. The ozone oxidation was formed in the temperature range of $300{\sim}500^{\circ}C$ at an ozone concentration of 17.5 wt%, and the passivation characteristics were compared. Compared to the silicon oxide film formed by nitric acid oxidation, implied open circuit voltage (iVoc) was improved by ~20 mV in the ozone oxidation and the ozone oxidation after the nitric acid pretreatment was improved by ~30 mV.

Keywords

References

  1. A. G. Aberle, Prog. Photovoltaics, 8, 473 (2000). [DOI: https:// doi.org/10.1002/1099-159X(200009/10)8:5<473::AID-PIP337> 3.0.CO;2-D]
  2. M. A. Green, Prog. Photovoltaics: Process. Res. Appl., 17, 183 (2009). [DOI: https://doi.org/10.1002/pip.892]
  3. T. Matsumoto, R. Hirose, F. Shibata, D. Ishibashi, S. Ogawara, and H. Kobayashi, Sol. Energy Mater. Sol. Cells, 134, 298 (2015). [DOI: https://doi.org/10.1016/j.solmat.2014.11.040]
  4. S. D. Wolf, G. Agostinelli, G. Beaucarne, and P. Vitanov, J. Appl. Phys., 97, 063303 (2005). [DOI: https://doi.org/10.1063/ 1.1861138]
  5. R. Hezel and K. Jaeger, J. Electrochem. Soc., 136, 518 (1989). [DOI: https://doi.org/10.1149/1.2096673]
  6. G. Dingemans, M.C.M. van de Sanden, and W.M.M. Kessels, Electrochem. Solid-State Lett., 13, H76 (2010). [DOI: https:// doi.org/10.1149/1.3276040]
  7. B. Hoex, J.J.H. Gielis, M.C.M. van de Sanden, and W.M.M. Kessels, J. Appl. Phys., 104, 113703 (2008). [DOI: https:// doi.org/10.1063/1.3021091]
  8. F. Feldmann, M. Bivour, C. Reichel, M. Hermle, and S. W. Glunz, Sol. Energy Mater. Sol. Cells, 120, 270 (2014). [DOI: https://doi.org/10.1016/j.solmat.2013.09.017]
  9. A. Richter, J. Benick, F. Feldmann, A. Fell, M. Hermle, and S. W. Glunz, Sol. Energy Mater. Sol. Cells, 173, 96 (2017). [DOI: https://doi.org/10.1016/j.solmat.2017.05.042]
  10. W. Kern and D. A. Puotinen, RCA Rev., 31, 187 (1970).
  11. J. Shewchun, R. Singh, and M. A. Green, J. Appl. Phys., 48, 765 (1977). [DOI: https://doi.org/10.1063/1.323667]
  12. N. Awaji, Y. Sugita, T. Nakanishi, S. Ohkubo, K. Takasaki, and S. Komiya, J. Vac. Sci. Technol. A, 14, 971 (1996). [DOI: https://doi.org/10.1116/1.580424]
  13. D. K. Schroder, Semiconductor Material and Device Characterization 3rd ed. (John Wiley & Sons, Inc., New Jersey, 2006) p. 319.
  14. A. Moldovan, F. Feldmann, M. Zimmer, J. Rentsch, J. Benick, and M. Hermle, Sol. Energy Mater. Sol. Cells, 142, 123 (2015). [DOI: https://doi.org/10.1016/j.solmat.2015.06.048]