DOI QR코드

DOI QR Code

Electrochemical Properties of Additive-Free Nanostructured Cobalt Oxide (CoO) Lithium Ion Battery Electrode

첨가제 없이 제작된 나노구조 코발트 산화물 리튬이온 배터리 전극의 전기 화학적 특성

  • Kim, Juyun (Department of Materials Science and Engineering, Hongik University) ;
  • Park, Byoungnam (Department of Materials Science and Engineering, Hongik University)
  • 김주윤 (홍익대학교 신소재공학과) ;
  • 박병남 (홍익대학교 신소재공학과)
  • Received : 2018.03.26
  • Accepted : 2018.04.17
  • Published : 2018.07.01

Abstract

Transition metal oxide materials have attracted widespread attention as Li-ion battery electrode materials owing to their high theoretical capacity and good Li storage capability, in addition to various nanostructured materials. Here, we fabricated a CoO Li-ion battery in which Co nanoparticles (NPs) are deposited into a current collector through electrophoretic deposition (EPD) without binding and conductive agents, enabling us to focus on the intrinsic electrochemical properties of CoO during the conversion reaction. Through optimized Co NP synthesis and electrophoretic deposition (EPD), CoO Li-ion battery with 630 mAh/g was fabricated with high cycle stability, which can potentially be used as a test platform for a fundamental understanding of conversion reaction.

Keywords

References

  1. M. Armand and J. M. Tarascon, Nature, 451, 652 (2008). [DOI: https://doi.org/10.1038/451652a]
  2. K. Kang, Y. S. Meng, J. Breger, C. P. Grey, and G. Ceder, Science, 311, 977 (2006). [DOI: https://doi.org/10.1126/science.1122152]
  3. V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Energy Environ. Sci., 4, 3243 (2011). [DOI: https://doi.org/10.1039/C1EE01598B]
  4. P. Poizot and F. Dolhem, Energy Environ. Sci., 4, 2003 (2011). [DOI: https://doi.org/10.1039/C0EE00731E]
  5. Y. Chen, Z. Lu, L. Zhou, Y. W. Mai, and H. Huang, Energy Environ. Sci., 5, 7898 (2012). [DOI: https://doi.org/10.1039/ C2EE22085G]
  6. N. A. Kaskhedikar and J. Maier, Adv. Mater., 21, 2664 (2009). [DOI: https://doi.org/10.1002/adma.200901079]
  7. Y. S. Hu, P. Adelhelm, B. M. Smarsly, S. Hore, M. Antonietti, and J. Maier, Adv. Funct. Mater., 17, 1873 (2007). [DOI: https:// doi.org/10.1002/adfm.200601152]
  8. S. S. Zhang, J. Power Sources, 161, 1385 (2006). [DOI: https:// doi.org/10.1016/j.jpowsour.2006.06.040]
  9. Y. Chen, Z. Lu, L. Zhou, Y. W. Mai, and H. Huang, Nanoscale, 4, 6800 (2012). [DOI: https://doi.org/10.1039/C2NR31557B]
  10. Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, and T. Miyasaka, Science, 276, 1395 (1997). [DOI: https://doi.org/10.1126/science.276.5317.1395]
  11. L. Q. Sun, M. J. Li, K. Sun, S. H. Yu, R. S. Wang, and H. M. Xie, J. Phys. Chem. C, 116, 14772 (2012). [DOI: https://doi.org/10.1021/jp302265n]
  12. A. Ponrouch, P. L. Taberna, P. Simon, and M. R. Palacín, Electrochim. Acta, 61, 13 (2012). [DOI: https://doi.org/10.1016/j.electacta.2011.11.029]
  13. F. Wang, R. Robert, N. A. Chernova, N. Pereira, F. Omenya, F. Badway, X. Hua, M. Ruotolo, R. Zhang, L. Wu, V. Volkov, D. Su, B. Key, M. S. Whittingham, C. P. Grey, G. G. Amatucci, Y. Zhu, and J. Graetz, J. Am. Chem. Soc., 133, 18828 (2011). [DOI: https://doi.org/10.1021/ja206268a]
  14. Y. M. Kang, M. S. Song, J. H. Kim, H. S. Kim, M. S. Park, J. Y. Lee, H. K. Liu, and S. X. Dou, Electrochim. Acta, 50, 3667 (2005). [DOI: https://doi.org/10.1016/j.electacta.2005.01.012]
  15. J. Wang, N. Yang, H. Tang, Z. Dong, Q. Jin, M. Yang, D. Kisailus, H. Zhao, Z. Tang, and D. Wang, Angew. Chem., 125, 6545 (2013). [DOI: https://doi.org/10.1002/ange.201301622]
  16. L. Besra and M. Liu, Prog. Mater. Sci., 52, 1 (2007). [DOI: https://doi.org/10.1016/j.pmatsci.2006.07.001]
  17. V. F. Puntes, K. M. Krishnan, and A. P. Alivisatos, Science, 291, 2115 (2001). [DOI: https://doi.org/10.1126/science.1058495]
  18. D. H. Ha, L. M. Moreau, S. Honrao, R. G. Hennig, and R. D. Robinson, J. Phys. Chem. C, 117, 14303 (2013). [DOI: https://doi.org/10.1021/jp402939e]
  19. M. V. Reddy, G. Prithvi, K. P. Loh, and B.V.R. Chowdari, ACS Appl. Mater. Interfaces, 6, 680 (2013). [DOI: https:// doi.org/10.1021/am4047552]
  20. P. Verma, P. Maire, and P. Novak, Electrochim. Acta, 55, 6332 (2010). [DOI: https://doi.org/10.1016/j.electacta.2010.05.072]
  21. F. Cheng, J. Liang, Z. Tao, and J. Chen, Adv. Mat., 23, 1695 (2011). [DOI: https://doi.org/10.1002/adma.201003587]
  22. G. X. Wang, Y. Chen, K. Konstantinov, M. Lindsay, H. K. Liu, and S. X. Dou, J. Power Sources, 109, 142 (2002). [DOI: https://doi.org/10.1016/S0378-7753(02)00052-6]
  23. X. W. Lou, D. Deng, J. Y. Lee, J. Feng, and L. A. Archer, Adv. Mat., 20, 258 (2008). [DOI: https://doi.org/10.1002/ adma.200702412]
  24. Y. Li, B. Tan, and Y. Wu, Nano lett., 8, 265 (2008). [DOI: https://doi.org/10.1021/nl0725906]
  25. G. Zhou, D. W. Wang, F. Li, L. Zhang, N. Li, Z. S. Wu, L. Wen, G. Q. Lu, and H. M. Cheng, Chem. Mater., 22, 5306 (2010). [DOI: https://doi.org/10.1021/cm101532x]
  26. H. J. Liu, S. H. Bo, W. J. Cui, F. Li, C. X. Wang, and Y. Y. Xia, Electrochim. Acta, 53, 6497 (2008). [DOI: https://doi.org/10.1016/j.electacta.2008.04.030]
  27. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, Nature, 407, 496 (2000). [DOI: https://doi.org/ 10.1038/35035045]
  28. X. L. Huang, R. Z. Wang, D. Xu, Z. L. Wang, H. G. Wang, J. J. Xu, Z. Wu, Q. C. Liu, Y. Zhang, and X. B. Zhang, Adv. Funct. Mater., 23, 4345 (2013). [DOI: https://doi.org/10.1002/ adfm.201203777]