• 제목/요약/키워드: Solid composites

검색결과 334건 처리시간 0.02초

Preparation and Evaluation of Solid Composites Containing Choline Alphoscerate

  • Kim, Hoon;Cho, Seong-Wan
    • 대한의생명과학회지
    • /
    • 제25권2호
    • /
    • pp.170-176
    • /
    • 2019
  • The objective of this study was to evaluate the characteristics of the mixtures of choline alphoscerate (alpha-glycerylphosphorylcholine, alpha-GPC), in the liquid form, and sucrose ester, which formed a solid composite. The choline alphoscerate solid composites were prepared using different ratios of sucrose ester, and different preparation methods, such as air drying and rotary evaporation, were compared for their preparation efficacy. We examined the characteristics of the solid composites by using scanning electron microscopy (SEM), angle of repose, and moisture content. The ideal mixing ratio of choline alphoscerate and sucrose ester was determined as 1:3 and air drying was found to be more suitable for the preparation of solid composites than rotary evaporation. SEM measurements of the degree of dispersion and the size of particles indicated that a high-temperature air method was more suitable. These results demonstrated the successful preparation of choline alphoscerate solid composites that have potential for industrial use.

Fatigue modeling of chopped strand mat/epoxy composites

  • Shokrieh, M.M.;Esmkhania, M.;Taheri-Behrooz, F.
    • Structural Engineering and Mechanics
    • /
    • 제50권2호
    • /
    • pp.231-240
    • /
    • 2014
  • In the present research, fatigue behavior of chopped strand mat/epoxy composites has been studied with two different techniques. First, the normalized stiffness degradation approach as a well-known model for unidirectional and laminated composites was utilized to predict the fatigue behavior of chopped strand mat/epoxy composites. Then, the capability of the fatigue damage accumulation model for chopped strand mat/epoxy composites was investigated. A series of tests has been performed at different stress levels to evaluate both models with the obtained results. The results of evaluation indicate a better correlation of the normalized stiffness degradation technique with experimental results in comparison with the fatigue damage accumulation model.

Flexural fatigue modeling of short fibers/epoxy composites

  • Shokrieh, M.M.;Haghighatkhah, A.R.;Esmkhani, M.
    • Structural Engineering and Mechanics
    • /
    • 제64권3호
    • /
    • pp.287-292
    • /
    • 2017
  • In the present research, an available flexural stiffness degradation model was modified and a new comprehensive model called "X-NFSD" was developed. The X-NFSD model is capable of predicting the flexural stiffness degradation of composite specimen at different states of stresses and at room temperature. The model was verified by means of different experimental data for chopped strand mat/epoxy composites under displacement controlled bending loading condition at different displacements and states of stresses. The obtained results provided by the present model are impressively in very good agreement with the experimental data and the mean value of error of 5.4% was achieved.

A Novel Route to Realise High Degree of Graphitization in Carbon-carbon Composites Derived from Hard Carbons

  • Mathur, R.B.;Bahl, O.P.;Dhami, T.L.;Chauhan, S.K.
    • Carbon letters
    • /
    • 제4권3호
    • /
    • pp.111-116
    • /
    • 2003
  • Carbon/carbon composites were developed using PAN based carbon fibres and phenolic resin as matrix in different volume fractions and heat treated to temperatures between $1000^{\circ}C$ to $2500^{\circ}C$. Although both the starting precursors are nongraphitizing hard carbons individually, their composites lead to very interesting properties e.g. x-ray diffractograms show the development of graphitic phase for composites having fibre volume fractions of 30~40%. Consequently the electrical resistivity of such composites reaches a value of $0.8\;m{\Omega}cm$, very close to highly graphitic material. However, it was found that by increasing the fibre volume fraction to 50~60%, the trend is reversed. Optical microscopy of the composites also reveals the development of strong columnar type microstructure at the fibre (matrix interface due to stress graphitization of the matrix. The study forcasts a unique possibility of producing high thermal conductivity carbon/carbon composites starting with carbon fibres in the chopped form only.

  • PDF

The effect of nanoparticles on enhancement of the specific mechanical properties of the composite structures: A review research

  • Arani, Ali Ghorbanpour;Farazin, Ashkan;Mohammadimehr, Mehdi
    • Advances in nano research
    • /
    • 제10권4호
    • /
    • pp.327-337
    • /
    • 2021
  • In this review, composite structures are used for many industries for at least four decades. Polymeric composites are one of the important structures in the aerospace and aviation industry because of their high strength and low weight. In this comprehensive review, mechanical behaviors, physical and mechanical properties of polymeric composites, different types of reinforcements, different methods to fabricate polymeric composites, historical structural composite materials for aviation and aerospace industries, and also different methods for the characterization are reported. How to use various methods of composite preparation using different nanofillers as reinforcements and its effect on the physical properties and mechanical behavior of composites are discussed as well.

반응고법에 의한 금속복합재료의 제조 및 성형 시스템의 개발 (Fabrication of Metal Matrix Composites and Development of Forming System in Mashy State)

  • 강충길;김현우;김영도
    • 대한기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.581-593
    • /
    • 1990
  • 본 연구에서는 교반기술에 의하여 얻어진 반응고상태의 금속에 단섬유를 첨가 하여 복합재료를 제조하였다. 그리고 제조되어진 복합재료에 있어서 섬유의 분산상 태및 기지재와의 접합관계를 조사하여 압연가공에 필요한 반응고상태인 금속복합재료 의 제조방법을 확립하였다. 균일하게 분실되어진 반용융상태의 단섬유강화형 금속복 합재료를 직접 압연하여 박판을 제조할 수 있는 가능성을 검토하였으며, 또한 제조되 어진 박판의 인장시험에 의하여 기계적 성질을 조사하였다.

폴리프로필렌/마이카 복합재료의 물성에 미치는 고상압출 배향의 영향 (Effects of Orientation via Solid-State Extrusion on Properties of Polypropylene/Mica Composites)

  • 이재춘;하창식
    • 접착 및 계면
    • /
    • 제15권1호
    • /
    • pp.9-13
    • /
    • 2014
  • 본 연구는 폴리프로필렌/마이카 복합재료의 고상압출에 의한 배향에 따른 기계적 물성의 변화에 관한 연구이다. 마이카 함량이 증가할수록 복합재료의 비중이 증가하였다. 하지만 고상압출에 따른 배향에 의해 복합재료의 비중은 미세공극의 발생으로 말미암아 비중은 배향 전에 비해 현저히 감소하는 것으로 나타났다. 이러한 미세공극의 존재는 복합재료의 인장 및 굴곡물성에 큰 영향을 미치는 것으로 나타났다. 고상압출 여부에 관계없이 마이카 함량이 10 wt%일 때 최대 굴곡 물성이 관찰되었다.

Preparation and Thermal Performance of Fullerene-Based Lead Salt

  • Guan, Hui-Juan;Peng, Ru-Fang;Jin, Bo;Liang, Hua;Zhao, Feng-Qi;Bu, Xing-Bing;Han, Wen-Jing;Chu, Shi-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2257-2262
    • /
    • 2014
  • $C_{60}$ is widely investigated because of its unique structure. But its applications in solid propellant seem to be relatively neglected. $C_{60}$ has more outstanding features than carbon black which is widely used as a catalyst ingredient of solid propellant. To combine the advantages of fullerene and lead salts, another good composite in propellant catalysts, we synthesized a kind of fullerene phenylalanine lead salt (FPL) and explored its thermal performances by differential thermal analysis (DTA) and thermogravimetry analysis (TGA). The results show it undergoes four exothermic processes started from 408 K. Combined TGA and X-ray diffractometer (XRD), the decomposition mechanism of FPL was derived by TG-IR and comparing IR spectra of FPL and its residues after burned to $327^{\circ}C$, $376^{\circ}C$ and $424^{\circ}C$, respectively. Effect of FPL on the decomposition characteristic of hexogen (RDX), a type of explosive in propellant, has been investigated using DTA at different heating rate, which shows the decomposition temperatures of the explosive are all reduced by more than 20 K. The corresponding activation energy ($E_a$) is decreased by $30kJ{\cdot}mol^{-1}$. So FPL has potential application as a combustion catalyst in solid propellant.

탄소섬유와 SiC 휘스커를 혼합한 $Al/Al_2O_3$ 복합재료의 마멸특성 (Wear Characterization of $Al/Al_2O_3$ Composites Reinforced with Hybrid of Carbon Fibers and SiC Whiskers)

  • 봉하동;송정일;한경섭
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1619-1629
    • /
    • 1995
  • The Al/Al$_{2}$O$_{3}$ SiC and Al/Al$_{2}$O$_{3}$/C hybrid metal matrix composites (MMCs) were fabricated by squeeze infiltration method. Uniform distribution of reinforcements were found in the microstructure of metal matrix composites. Mechanical tests were carried out under various test conditions to clearly identify mechanical behavior of MMCs, and the wear mechanism of Al/Al$_{2}$O$_{3}$/(SiC or C) hybrid metal matrix composites were investigated. The tensile strength and hardness of hybrid composites was resulted in increasing compared with those of the unreinforced matrix alloy. Wear resistance was strongly dependent upon kinds of fiber, volume fraction and sliding speed. The wear resistance of metal matrix composites was remarkably improved by the addition of reinforcements. Especially, the wear resistance of the hybrid composites of carbon fibers was more effective than in the composites reinforced with alumina and SiC whiskers of reinforcements. This was due to the effect of carbon fiber on the solid lubrication. Wear mechanisms of hybrid composites were suggested from wear surface analyses. The major wear mechanism of hybrid composites was the abrasive wear at low to intermediate sliding speed, and the melting wear at intermediate to high sliding speed.

Solid State Sintering of Calcium Phosphate Ceramic Composites and Their Cellular Response

  • Cho, Yeong-Cheol;Kong, Young-Min;Riu, Doh-Hyung
    • 대한금속재료학회지
    • /
    • 제50권9호
    • /
    • pp.691-695
    • /
    • 2012
  • Calcium phosphate ceramic composites, consisting of hydroxyapatite(HA) and tricalcium phosphate (TCP), were fabricated by solid state sintering in order to investigate the effect of their initial compositions on microstructural evolutions and biocompatibility. All the sintered calcium phosphate ceramics exhibited almost full densification, while the grain growth of the composites increased with an increasing TCP content in the green body. The TCP phase transformed into a Ca-deficient HA phase during sintering via the diffusion of calcium ions from the HA phase into the TCP phase. The phases formed in the composites significantly affected the biocompatibility of the composites. The HA-matrix ceramic composites with TCP had a better cellular response than the pure HA ceramics, presumably due to the newly formed Ca-deficient HA.