References
- ASTM B593-96 (2003), Standard Test Method for Bending Fatigue Testing for Copper-Alloy Spring Materials.
- ASTM D 790-10 (2010), Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials.
- Berchem, K. and Hocking, M.G. (2006), "A simple plane bending fatigue and corrosion fatigue testing machine", Measur. Sci. Technol., 17, 60-66. https://doi.org/10.1088/0957-0233/17/10/N05
- Caprino, G. and D'Amore, A. (1998), "Flexural fatigue behavior of random continuous-fiber reinforced thermoplastic composites", Compos. Sci. Tech., 58, 957-965. https://doi.org/10.1016/S0266-3538(97)00221-2
- Catangiu, A., Dumitrescu, A.T. and Ungureanu, D. (2011), "Glass-Epoxy composite materials", Mater. Mech., 6, 47-51.
- De Baere, I., Van Paepegem, W. and Degrieck, J. (2009), "Comparison of different setups for fatigue testing of thin composite laminates in bending", Int. J. Fatig., 31(6), 1095-1101. https://doi.org/10.1016/j.ijfatigue.2008.05.011
- Epaarachchi, J.A. and Clausen, P.D. (2003), "A model for fatigue behavior prediction of Glass Fibre-Reinforced Plastic (GFRP) composites for various stress ratios and test frequencies", Comp. A: Appl. Sci. Manuf., 34, 313-326. https://doi.org/10.1016/S1359-835X(03)00052-6
- Koricho, E.G., Belingardi, G. and Beyene, A.T. (2014), "Bending fatigue behavior of twill fabric E-glass/epoxy composite", Comput. Struct., 111, 169-178. https://doi.org/10.1016/j.compstruct.2013.12.032
- Mandell, J.F. (1990), Fatigue of Composite Materials, Ed. Reifsnider, K.L., Elsevier Science Publishers B.V.
- Mortazavian, S. and Fatemi, A. (2015), "Fatigue behavior and modeling of short fiber reinforced polymer composites: A literature review" Int. J. Fatig., 70, 297-321. https://doi.org/10.1016/j.ijfatigue.2014.10.005
- Naderi, M. and Khonsari, M.M. (2012), "Thermodynamic analysis of fatigue failure in a composite laminate", Mech. Mater., 46, 113-122. https://doi.org/10.1016/j.mechmat.2011.12.003
- Paepegem, V.M. and Degrieck, J. (2001a), "Experimental set-up for and numerical modelling of bending fatigue experiments on plain woven glass/epoxy composites", Compos. Struct., 51, 1-8. https://doi.org/10.1016/S0263-8223(00)00092-1
- Paepegem, V.M. and Degrieck, J. (2002), "A new coupled approach of residual stiffness and strength for fatigue of fibrereinforced composites", Int. J. Fatig., 24, 747-762. https://doi.org/10.1016/S0142-1123(01)00194-3
- Paepegem, V.M. and Degrieck, J. (2001b), "Fatigue degradation modelling of plain woven glass/epoxy composites", Compos. Part A, Appl. Sci. Manuf., 32, 1433-1441. https://doi.org/10.1016/S1359-835X(01)00042-2
- Paepegem, V.M. and Degrieck, J. (2001c), "Modelling strategies for fatigue damage behaviour of fibre-reinforced polymer composites", Eur. J. Mech. Environ. Eng., 1, 3.
- Rajeesh, K.R., Gnanamoorthy, R. and Velmurugan, R. (2010), "Effect of humidity on the indentation hardness and flexural fatigue behavior of polyamide 6 nanocomposite", Mater. Sci. Eng.: A, 527(12), 2826-2830. https://doi.org/10.1016/j.msea.2010.01.070
- Ramkumar, A. and Gnanamoorthy, R. (2010), "Effect of nanoclay addition on the displacement-controlled flexural fatigue behavior of a polymer", J. Mater. Sci., 45, 4180-4187. https://doi.org/10.1007/s10853-010-4508-2
- Shokrieh, M.M., Esmkhani, M. and Taheri-Behrooz, F. (2014a), "Fatigue modeling of chopped strand mat/epoxy composites", Struct. Eng. Mech., 50, 231-240. https://doi.org/10.12989/sem.2014.50.2.231
- Shokrieh, M.M. Esmkhani, M. and Haghighatkhah, A.R. (2014b), "Flexural fatigue behaviour of carbon nanofiber/epoxy nanocomposites", Fatig. Fract. Eng. Mater. Struct., 37(5), 553-560. https://doi.org/10.1111/ffe.12137
- Sidoroff, F. and Subagio, B. (1987), "Fatigue damage modelling of composite materials from bending tests", Sixth International Conference on Composite Materials (ICCM-VI) & Second European Conference on Composite Materials (ECCM-II), 4, 4-32.
- Tarar, W., Scott-Emuakpor, O. and Herman, S. (2010), "Development of new finite elements for fatigue life prediction in structural components", Struc. Eng. Mech., 35(6), 659-676. https://doi.org/10.12989/sem.2010.35.6.659