DOI QR코드

DOI QR Code

Solid State Sintering of Calcium Phosphate Ceramic Composites and Their Cellular Response

  • Cho, Yeong-Cheol (Department of Oral and Maxillofacial Surgery, Ulsan University Hospital, College of Medicine, University of Ulsan) ;
  • Kong, Young-Min (School of Materials Science and Engineering, College of Engineering, University of Ulsan) ;
  • Riu, Doh-Hyung (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • Received : 2012.06.08
  • Published : 2012.09.25

Abstract

Calcium phosphate ceramic composites, consisting of hydroxyapatite(HA) and tricalcium phosphate (TCP), were fabricated by solid state sintering in order to investigate the effect of their initial compositions on microstructural evolutions and biocompatibility. All the sintered calcium phosphate ceramics exhibited almost full densification, while the grain growth of the composites increased with an increasing TCP content in the green body. The TCP phase transformed into a Ca-deficient HA phase during sintering via the diffusion of calcium ions from the HA phase into the TCP phase. The phases formed in the composites significantly affected the biocompatibility of the composites. The HA-matrix ceramic composites with TCP had a better cellular response than the pure HA ceramics, presumably due to the newly formed Ca-deficient HA.

Keywords

Acknowledgement

Supported by : University of Ulsan

References

  1. L. Hench, J. Am. Ceram. Soc. 81, 1705 (1998).
  2. L. L. Hench and J. M. Polak, Science 295, 1014 (2002). https://doi.org/10.1126/science.1067404
  3. J. R. Jones and L. L. Hench, Curr. Opin. Soild St. M. 7, 301 (2003). https://doi.org/10.1016/j.cossms.2003.09.012
  4. D. S. Seo, Y. G. Kim, and J. K. Lee, Met. Mater. Int. 16, 687 (2010) https://doi.org/10.1007/s12540-010-0825-x
  5. K. P. Sanosh, M. C. Chu, A. Balakrishnan, T. N. Kim, and S. J. Cho, Met. Mater. Int. 16, 605 (2010) https://doi.org/10.1007/s12540-010-0813-1
  6. H. Monma, J. Ceram. Soc. Jpn. 96, 60 (1987).
  7. G. Daculsi, Biomaterials 19, 1473 (1998). https://doi.org/10.1016/S0142-9612(98)00061-1
  8. H. Yuan, Z. Yang, Y. Li, X. Zhang, J. D. de Bruijn, and K. de Kroot, J. Mat. Sci. Mater. Med. 9, 723 (1998). https://doi.org/10.1023/A:1008950902047
  9. O. Gauthier, J. M. Bouler, P. Weiss, J. Bosco, E. Aguado, and G. Daculsi, Bone 25, 71S (1999). https://doi.org/10.1016/S8756-3282(99)00137-4
  10. M. I. Alam, I. Ashhina, K. Ohmamiuda, and S. Enomoto, J. Biomed. Mat. Res. 54, 129 (2001). https://doi.org/10.1002/1097-4636(200101)54:1<129::AID-JBM16>3.0.CO;2-D
  11. K. Kurashina, H. Kurita, Q. Wu, A. Ohtsuka, and H. Kobayashi, Biomaterials 23, 407 (2002). https://doi.org/10.1016/S0142-9612(01)00119-3
  12. H. Yuan, Z. Yang, J. D. de Bruijn, K. de Kroot, and X. Zhang, Biomaterials 22, 2617 (2002).
  13. N. Kivrak and A. C. Tas, J. Am. Ceram. Soc. 81, 2245 (1998).
  14. E. I. Dorozhkina and S. V. Dorozhkin, Chem. Mater. 14, 4267 (2002). https://doi.org/10.1021/cm0203060