• Title/Summary/Keyword: Solder plating

Search Result 81, Processing Time 0.033 seconds

The Stability of Plating Solution and the Current Density Characteristics of the Sn-Ag Plating for the Wafer Bumping

  • Kim, Dong-Hyun;Lee, Seong-Jun
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.3
    • /
    • pp.155-163
    • /
    • 2017
  • In this study, the effects of the concentration of metal ions and the applied current density in the Sn-Ag plating solutions were examined in regards to the resulting composition and morphology of the solder bumps' surface. Furthermore the effect of any impurities present in the methanesulfonic acid used as a base acid in the Sn-Ag solder plating solution on the stability of plating solution as well as the characteristics of the Sn-Ag alloys films was also explored. As expected, the uniform bump was obtained by means of removing impurities in the plating solution. Consequently the resultant solder bump was obtained in an optimal current density of the range of $1A/dm^2$ to $15A/dm^2$, which has acceptable bump shape and surface roughness with 12inch wafer trial results.

A Reliability Test for ph-free SnCu Plating Solution and It's Deposit (Sn-Cu 무연 도금용액 및 피막의 신뢰성평가)

  • Lee Hong-Kee;Hur Jin-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.6
    • /
    • pp.216-226
    • /
    • 2005
  • Pb-Free Technology was born with environmental problems of electronic component, Being connected by big and small project of every country. Also, in each country environment is connected and various standards of IEC, ISO, MIL, JIS, KS, JEDEC, EIAJ etc. All products can divide at solder part and finishing part These can tested each and synthetically divide. This research is reliability evaluation for three kind of ph-free SnCu solder plating solution and it's deposit. First, executed analysis about Pure Sn, SnCu solutions and plating surface by way similar to other plating solution analysis. Next, executed reliability about test method and equipment for reliable analyzer system construction. Next, data comparison and estimation, main estimation test method and item's choice. In this paper the systematic surface analysis and reliability for plating solutions and it's deposit in metal surface finishing processes could be shown.

A Study on the Characteristics of Sn-Cu Solder Bump for Flip Chip by Electroplating (전해도금에 의한 플립칩용 Sn-Cu 솔더범프의 특성에 관한 연구)

  • Jung, Seok-Won;Hwang, Hyun;Jung, Jae-Pil;Kang, Chun-Sik
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.49-53
    • /
    • 2002
  • The Sn-Cu eutectic solder bump formation ($140{\mu}{\textrm}{m}$ diameter, $250{\mu}{\textrm}{m}$ pitch) by electroplating was studied for flip chip package fabrication. The effect of current density and plating time on Sn-Cu deposit was investigated. The morphology and composition of plated solder surface was examined by scanning electron microscopy. The plating thickness increased with increasing time. The plating rate increased generally according to current density. After the characteristics of Sn-Cu plating were investigated, Sn-Cu solder bumps were fabricated on optimal condition of 5A/dm$^2$, 2hrs. Ball shear test after reflow was performed to measure adhesion strength between solder bump and UBM (Under Bump Metallization). The shear strength of Sn-Cu bump after reflow was higher than that of before reflow.

  • PDF

Effects of Cu Wire's Shape on the Plating Property of Sn-Pb Solder for Photovoltaic Ribbons

  • Cho, Tae-Sik;Chae, Mun-Seok;Cho, Chul-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.217-220
    • /
    • 2014
  • We studied the plating properties of Sn-Pb solder according to the shape of the Cu wire's cross-section for photovoltaic ribbon. The thickness of the Sn-Pb layer largely decreased to 29% on a curved Cu surface, compared to a flat Cu surface. This phenomenon is caused by the geometrical decrease in the contact angle of the liquid Sn-Pb solder and an increase in the surface energy of the solid/vapor on the curved Cu surface. We suggest a new ribbon's design where the Cu wire's cross-section is a semi-ellipse. These semi-ellipse ribbons can decrease the use of Sn-Pb solder to 64% and increase the photovoltaic efficiency, by reducing the contact area between the ribbon and cell, to 84%. We also see an improvement of reflectivity in the curved surface.

Brittle Fracture Behavior of ENIG/Sn-Ag-Cu Solder Joint with pH of Ni-P Electroless Plating Solution (무전해 니켈 도금액 pH 변화에 따른 ENIG/Sn-Ag-Cu솔더 접합부의 취성파괴 특성)

  • Seo, Wonil;Lee, Tae-Ik;Kim, Young-Ho;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.29-34
    • /
    • 2020
  • The behavior of brittle fracture of electroless nickel immersion gold (ENIG) /Sn-3.0wt.%Ag-0.5wt.%Cu (SAC305) solder joints was evaluated. The pH of the electroless nickel plating solution for ENIG surface treatment was changed from 4.0 to 5.5. As the pH of the Ni plating solution increased, pin hole in the Ni-P layer increased. The thickness of the interfacial intermetallic compound (IMC) of the solder joint increased with pH of Ni plating solution. The high speed shear strength of the SAC305 solder joint on ENIG surface finish decreased with the pH of the Ni plating solution. In addition, the brittle fracture rate of the solder joint was the highest when the pH of the Ni plating solution was 5.

Characteristics of Sn-Pb Electroplating and Bump Formation for Flip Chip Fabrication (전해도금에 의해 제조된 플립칩 솔더 범프의 특성)

  • Hwang, Hyeon;Hong, Soon-Min;Kang, Choon-Sik;Jung, Jae-Pil
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.520-525
    • /
    • 2001
  • The Sn-Pb eutectic solder bump formation ($150\mu\textrm{m}$ diameter, $250\mu\textrm{m}$ pitch) by electroplating was studied for flip chip package fabrication. The effect of current density and plating time on Sn-Pb deposit was investigated. The morphology and composition of plated solder surface was examined by scanning electron microscopy. The plating thickness increased wish increasing time. The plating rate became constant at limiting current density. After the characteristics of Sn-Pb plating were investigated, Sn-Pb solder bumps were fabricated in optimal condition of $7A/dm^$. 4hr. Ball shear test after reflow was performed to measure adhesion strength between solder bump and UBM (Under Bump Metallurgy). The shear strength of Sn-Pb bump after reflow was higher than that of before reflow.

  • PDF

Fabrication of Wafer Level Fine Pitch Solder Bump for Flip Chip Application (플립칩용 웨이퍼레벨 Fine Pitch 솔더범프 형성)

  • 주철원;김성진;백규하;이희태;한병성;박성수;강영일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.11
    • /
    • pp.874-878
    • /
    • 2001
  • Solder bump was electroplated on wafer for flip chip application. The process is as follows. Ti/Cu were sputtered and thick PR was formed by several coating PR layer. Fine pitch vias were opened using via mask and then Cu stud and solder bump were electroplated. Finally solder bump was formed by reflow process. In this paper, we opened 40㎛ vias on 57㎛ thick PR layer and electroplated solder bump with 70㎛ height and 40㎛ diameter. After reflow process, we could form solder bump with 53㎛ height and 43㎛ diameter. In plating process, we improved the plating uniformity within 3% by using ring contact instead of conventional multi-point contact.

  • PDF

Study on tin immersion plating on printed circuit boads (무전해 주석도금시의 문제점과 그 대책에 대한 연구)

  • 김동필;염희택
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.3-3
    • /
    • 2001
  • Two companies plating baths were selected for plating on phenol and epoxy resin boards as well as on flexible p polyimide boards. After plating, deposited i&IIk&.ness al1d physical properties, as well as solder wettabilities by aging with $150^{\circ}C$ heating and 100% humidity were compared. After plating and aged with two different tin baths, deposited thickness and physical properties were not so great differences, but solder wettabilities were superior used polymer catalyst than the other. Furthermore depend upon the compactness and fineness of metallic sturctures of the base copper, the amounts of the plated copper were big differel1lces. These differences seems to be inherited from the kind and amount of additives. as well as current densities, which are influences upon structures of Copper layers. Generally the tin thickness are hetween 0.5 to $1.0\mu\textrm{m}$ and thicker the solder wettabilities are the better, and also me compact structures of deposits showed gooo soidierabiiities. In this study, with our own deveiotaedl plating equipment could get more than $0.5\mu\textrm{m}$ of till thickness and piating speed was $0.1\mu\textrm{m}$ per minutes.

  • PDF

The Supplement of Sn/Cu, Plating Solution Affects in Plating Skim Quality of the Plating Product (Sn/Cu 도금액의 보충이 도금제품의 도금피막특성에 미치는 영향)

  • Jeon, Taeg-Jong;Ko, Jun-Bin;Lee, Dong-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.112-119
    • /
    • 2009
  • The purpose of this study is to evaluate the evaluation of process yield performed by using Sn & Cu treatment on the surface to optimize process condition for Lead-free solder application. The materials which are used for the New Surface Treatment study are Semi-Dulling plating for high speed Sn/Cu alloy of Soft Alloy GTC-33 Pb free known as "UEMURA Method" and plating substrate is alloy 42.Especially in lead-free plating process, it is important to control plating thickness and Copper composition than Sn/Pb plating. Evaluated and controlled plating thickness $12{\pm}3um$, Copper composition $2{\pm}1%$, plating particle and visual inspection. The optimization of these parameters and condition makes it makes possible to apply Sn/Cu Lead-free solder from Sn/Pb alloy.

INTERFACIAL REACTION AND STRENGTH OF QFP JOINTS USING SN-ZN-BI SOLDER WITH VARYING LEAD PLATING MATERIALS

  • Iwanishi, Hiroaki;Imamura, Takeshi;Hirose, Akio;Ekobayashi, Kojirou;Tateyama, Kazuki;Mori, Ikuo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.481-486
    • /
    • 2002
  • We have investigated the effects of plating materials for Cu lead (Sn-lOPb, AwPdJNi, Sn-3.5Ag, Sn-3Bi and Sn-0.7Cu) on properties of QFP joints using a Sn-8Zn-3Bi solder. The results were compared with the joints using Sn-3. 5Ag-0. 7Cu and Sn-37Pb solders. As a result, the joints with the Sn-3.5Ag, Sn-3Bi and Sn-0.7Cu plated Cu lead had the reliability comparable to those of the Sn-3.5Ag-0.7Cu and Sn-37Pb soldered joints with respect to the joint strength after the high temperature holding tests at 348K to 423k. In particular, the joint with the Sn-3.5Ag plated Cu lead had the best reliability. This is caused by the low growth rate of a Cu-Sn interfacial reaction layer that degrades the joint strength of the soldered joints. Consequently, the Sn-3.5Ag plating was found to be most feasible plating for the Sn-8Zn-3Bi soldered joint.

  • PDF