• Title/Summary/Keyword: Solar-Energy

Search Result 5,707, Processing Time 0.032 seconds

A Study on the Analysis of Solar Radiation Components for the Installation of Concentrating Photovoltaic System (집광식 태양광발전시스템 설치를 위한 태양광자원 성분분석에 관한 연구)

  • Jo, Dok-Ki;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.2
    • /
    • pp.53-59
    • /
    • 2007
  • Knowledge of the solar radiation components are essential for modeling many solar photovoltaic systems. This is particularly the case for applications that concentrate the incident energy to attain high photo-dynamic efficiency achievable only at the higher intensities. In order to estimate the performance of concentrating PV systems, it is necessary to know the intensity of the beam radiation, as only this component can be concentrated. The Korea Institute of Energy Research(KIER) has began collecting solar radiation component data since August, 1996. KIER's component data will be extensively used by concentrating PV system users or designers as well as by research institutes.

Field Test for a Biological Nitrogen Treatment System with Low Temperature Solar Thermal Energy (저온 태양열을 이용한 생물학적 오수 처리 장치 실증 실험)

  • Chung, Mo;Lee, Dong-Won
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.2
    • /
    • pp.34-41
    • /
    • 2008
  • A low-temperature solar thermal system assisting a biological nitrogen treatment reservoir was designed and field-tested. A large tank whose temperature was maintained at about $25-30^{\circ}C$ to enhance the performance of a biological nitrogen treatment process was heated by an array of flat plate solar collectors. Test results revealed that the overall collector efficiency was above 50% for the most cases tested. This high efficiency was possible owing to the relatively low collector temperature that can be traced back to the reservoir temperature. A substantial enhancement in nitrogen treatment was observed as a result of maintaining the reservoir temperature higher.

SOLAR PHOTOVOLTAICS IN INDIA : A STATUS REVIEW

  • DUTTA, VIRESH
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.130-133
    • /
    • 2006
  • Solar Photovoltaics (SPV) In India has become an important renewable source of energy particularly for rural and remote areas. The vastness of the country and the requirements of electricity in far-flung villages makes SPV very attractive, with inherent technological advantages providing additional boost. This has been recognized very early by Govt. Of India and Ministry of Non-Conventional Sources of Energy (MNES) has been entrusted with promoting SPV usage in the country. Rural electrification through SPV systems is one of the programmes which is expected to provide fillip to PV industry in the country. PV Industry in India is very well established with capability of solar cell fabrication and module fabrication as well as Balance of System design and fabrication. There several R&D groups in the academic institutions who are involved in improving solar cells efficiency, thin film solar cells and PV instrumentation. Thus, India provides a ready market for large scale utilization of solar energy through SPV technology.

  • PDF

GaAs Thin Films Grown on Conducting Glass by Hot Wall Epitaxy for Solar Cell

  • Tu, Jielei;Chen, Tingjin;Zhang, Chenjing;Shi, Zhaoshun;Wu, Changshu
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.2
    • /
    • pp.71-75
    • /
    • 2002
  • GaAs polycrystalline thin films with good performance were prepared on conducting glass by hot wall epitaxy (HWE), which were used for solar cell. Electron probe micro-analyzer (EPMA) was applied for the composition, morphology of surface and cross-section of grown films, and X-ray diffraction (XRD) for their phase structure; Raman scattering spectum (RSS) and photoluminescence (PL) were used for evaluating their optical characteristics. The results show that, there is textured structure on the surface of grown GaAs polycrystalline films, which is greatly promised to be suitable for the candidate of solar cell with low cost and high efficiency. It is concluded that the source and substrate at temperature of 900 ~ 930 $\^{C}$ and 500 $\^{C}$ respectively would be beneficial for such films.

  • PDF

The Study on Optimum Installation angle of Photovoltaic Arrays using the Expert System (전문가시스템을 이용한 태양광 어레이의 최적설치 각도에 관한 연구)

  • Yu, Gwon-Jong;Lee, Yo-Han;So, Jung-Hun;Seong, Se-Jin;Yu, Byung-Gyu
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.107-115
    • /
    • 2007
  • The measured solar radiation incident on tilted surfaces has been widely used as important solar radiation data in installing photovoltaic arrays. To optimize the incident solar radiation, the slope, that is the angle between the plane surface in question and the horizontal, and the solar azimuth angles are needed for these solar photovoltaic systems. This is because the performance of the solar photovoltaic systems is much affected by angle and direction of incident rays. The expert system can predict the optimum installation angle of photovoltaic arrays with those factors.

A Study on the Thermal Performance of a Solar House by a F-chart Method (F-chart 설계법(設計法)에 의한 태양열주택(太陽熱住宅)의 난방성능(暖房性能)에 관(關)한 연구(硏究))

  • Lee, Young-Soo;Seoh, Jeong-Ill;Yim, Jang-Soon
    • Solar Energy
    • /
    • v.2 no.2
    • /
    • pp.1-9
    • /
    • 1982
  • This paper presents a method. for estimating the useful output of solar heating sys-terns. Heating load calculations, climatic data and various conditions are used in this procedure to estimate the fraction of the monthly heating load supplied by solar energy for a particular system the design procedure presented in this paper referred to the f-chart method. The results of this study are as follows; 1) The collected energy is not rised lineary to collector area. 2) If the heating area has equivalent solar collector area, the solar energy utilization for space heating is over 90%. 3) Transmittance- absorptance product for radiation at normal incidence, (${\tau}{\alpha}$)/(${\tau}{\alpha}$)n, during most of the heating season is 0.92 for a two-cover collector. 4) Orientation of the collector has little effect on the annual performance of solar heating system within the $15^{\circ}$.

  • PDF

Evaluation of Solar Energy Resources in East-North Asia Areas (동북아시아 지역의 태양광자원 분석 평가)

  • Jo, Dok-Ki;Kang, Young-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.37-42
    • /
    • 2008
  • Since the solar radiation is the main input for sizing any solar photovoltaic system, it will be necessary to understand and evaluate the solar radiation data. The works presented here is the analysis of solar radiation data for East-North Asia areas. The data utilized in the analysis consist of the global radiation on horizontal surface, measured at 2 different stations during 3 years for the period from 2002 to 2004 and estimated using satellite at 27 different stations over the China and Mongolia. Also the measured data has been collected at 16 different stations all of the South Korea and estimated using satellite at 12 different stations over the North Korea from 1982 to 2005. The Result of analysis shows that the annual-average daily global radiation on the horizontal surface is 3.57 $MJ/m^2$. We conclude, based on the analysis, that East-North Asia areas have sufficient solar energy resources for the photovoltaic power generation system.

  • PDF

Experimental Study on the Thermal Performance of Passive Solar Trombe Wall System (자연형태양열 트롬월 축열벽 시스템의 열성능 특성 실측 분석 연구)

  • Yoon, Jong-Ho;Baek, Nam-Choon;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.1
    • /
    • pp.75-81
    • /
    • 2008
  • Thermal performance of passive solar Trombe wall system which is applied on the south wall of KIER Zero energy Solar House has been monitored for 6 months of heating season. Based upon the long-term measurement results, extensive statistical analysis was conducted to investigate temperature profiler and heat flow pattern in Trombe wall system under actual operating condition. Heat flow characteristics depending on the time variation of day and month was clearly revealed. Heat gain and loss on the inner surface of the Trombe wall was calculated base upon measured temperature data. Those results would be utilized to improve the efficiency of new type solar storage wall system.

Optimization of Solar Water Battery for Efficient Photoelectrochemical Solar Energy Conversion and Storage (효율적인 광전기화학적 태양에너지 전환과 저장을 위한 Solar Water Battery의 최적화)

  • Go, Hyunju;Park, Yiseul
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.85-92
    • /
    • 2021
  • A solar water battery is a system that generates power using solar energy. It is a combination of photoelectrochemical cells and an energy storage system. It can simultaneously convert and store solar energy without additional external voltage. Solar water batteries consist of photoelectrodes, storage electrodes and counter electrodes, and their properties and combination are important for the performance and the efficiency of the system. In this study, we tried to find the effect that changing the components of solar water batteries has on its system. The effects of the counter electrode during discharge, the kinds of photoelectrode and storage electrode materials, and electrolytes on the solar energy conversion and storage capacitance were studied. The optimized composition (TiO2 : NaFe-PB : Pt foil) exhibited 72.393 mAh g-1 of discharge capacity after 15 h of photocharging. It indicates that the efficiency of solar energy conversion and storage is largely affected by the configuration of the system. Also, the addition of organic pollutants to the chamber of the photoelectrode improved the battery's photo-current and discharge capacity by efficient photoelectron-hole pair separation with simultaneous degradation of organic pollutants. Solar water batteries are a new eco-friendly solar energy conversion and storage system that does not require additional external voltages. It is also expected to be used for water treatment that utilizes solar energy.

Performance Evaluation of Fixed-concentrated Photovoltaic/Thermal Hybrid Panel using Reflector (반사판을 이용한 고정식 집속형 태양광.열복합패널의 성능평가)

  • Seo, Yu-Jin;Huh, Chang-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.85-92
    • /
    • 2005
  • One of the most effective methods for utilizing solar energy is to combine thermal solar and optical energy simultaneously using a hybrid panel. Many systems using various kinds of photovoltaic panels have already been constructed. But utilizing solar energy by means of a hybrid panel with concentrator has not been to be attempted yet. Normally if sunlight is directed on the solar cell, and there is no increase in temperature, the absorption energy of each cell will increase per unit area. In a silicon solar cell. however, cell conversion efficiency decreases according to the increasing temperature. Therefore, to maintain cell conversion efficiency under normal condition, it is necessary to keep the cell at operating temperature. we design and make new hybrid panel with cooling system to prevent increasing of temperature on cell, collect effectively thermal energy. We compared performance of new hybrid panel with PV module and thermal panel. We also evaluated conversion efficiency, electric power and thermal capacity and confirmed cooling effect from thermal absorption efficiency.