• 제목/요약/키워드: Solar water heating system

검색결과 215건 처리시간 0.022초

태양열을 이용한 흡수식 냉방시스템의 시뮬레이션과 운전조건의 검토 (Simulation of Solar/Absorption Cooling Hybrid System and Examination of Its Operating Condition)

  • 허재영;이상용
    • 대한설비공학회지:설비저널
    • /
    • 제14권1호
    • /
    • pp.1-11
    • /
    • 1985
  • Solar/absorption cooling system was analyzed and its operating condition was examined. For the system, the optimum size of absorption refrigerator and collector area should be determined. As the temperature of water supplied to the generator increases, the collector efficiency decreases whereas the coefficient of performance of absorption refrigerator increases up to a certain point, and vice versa for decreasing of the temperature of water supplied to the generator . Thus if the reeling load is given, the appropriate operating condition can be determined between the two opposing trends by simulation program. As an example of the simulation, the case of Jejudo province was studied. Under the conditions (such as weather data and prices of components, etc.) given en the sample calculation, the result shows that the optimum temperature of water supplied to the generator turned out to be $80.3^{\circ}C$, and still shows a large economical disadvantage in present stage compared to the case of conventional vapor compression cooling/heating combined heat pump system.

  • PDF

플라스틱 온실(溫室)의 열저장(熱貯藏) 시스템의 개발(開發)에 관(關)한 연구(硏究)(II) -수경재배용(水耕栽培用) 태양열(太陽熱) 온실(溫室) 시스템의 열적(熱的) 성능(性能)- (Development of Thermal Storage System in Plastic Greenhouse(II) -Thermal performance of solar greenhouse system for hydroponic culture-)

  • 김용현;고학균;김문기
    • Journal of Biosystems Engineering
    • /
    • 제15권2호
    • /
    • pp.123-133
    • /
    • 1990
  • Thermal performance of a solar heating plastic greenhouse designed for a hydroponic system was studied. The system was constructed with the air-water heat exchanger and thermal storage tank that were combined with hydroponic water beds. Experiments were carried out to investigate the daily average heat stored and released in thermal storage tank, average solar energy collection efficiency, average coefficient of performance, average oil reduction factor of thermal storage system, and the heat transfer coefficient during the nighttime in plastic greenhouse. The results obtained in the present study are summarized as follows. 1. Daily average heat stored in thermal storage tank and released from the thermal storage tank was 1,259 and $797KJ/m^2$ day, respectively. 2. The average solar energy collection efficiency of thermal storage tank was 0.125 during the experiment period. And the average coefficient of performance of thermal storage system in plastic greenhouse was 3.6. 3. The average oil reduction factor of thermal storage system and the heat transfer coefficient during the nighttime in plastic greenhouse were found to be 0.52 and $4.3W/m^2\;hr\;^{\circ}C$, respectively.

  • PDF

공기식 PVT 컬렉터의 디자인 및 성능에 관한 연구 동향 분석 연구 (A Literature Review on Hybrid PV/Thermal Air Collector in terms of its Design and Performance)

  • 김진희;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제34권3호
    • /
    • pp.30-41
    • /
    • 2014
  • PV/Thennal combined system is a solar energy device that uses photovoltaic module as thermal absorption plate, producing thermal energy as well as electricity which can be utilized in buildings. The system removes heat from PV module through air or liquid and its efficiency will vary dependant on the thermal medium. The heat as the forms of hot air or hot water can be utilized for building use, like space heating and hot water. A significant amount of research and development on hybrid PV/thermal(PVT) collectors has been carried out. This study reviews literature on the research of air-based hybrid PVT collectors in terms of their design and energy performance.

친환경 농촌마을계획을 위한 주거 에너지 이용실태 조사 분석 (An Investigation and Analysis on Actual Condition of Energy Utilizations in Farmhouse for Environmental-friendly Planning of Rural Villages)

  • 남상운;김대식
    • 한국농공학회논문집
    • /
    • 제49권6호
    • /
    • pp.55-62
    • /
    • 2007
  • Actual states of energy utilizations were investigated and analyzed on three representative rural villages in Chungcheongnam-Do. Rural residents were almost using the ondol boiler as a heating facility and oil(diesel, kerosene) and electricity(night thermal-storage power service) as a heating energy. There were a few households using briquette or firewood in a fuel hole with Korean hypocaust. Most of their cooking facilities were gas ranges using LPG. The most popular hot-water supply system was an oil boiler and the next was an electricity boiler. The amount of energy use in a rural household generally showed 20,000 to 40,000 won/month of the electric power rate, 400 to 800 liter/year of the oil and 60 to 120 kg/year of the LPG. Prompt measures should be taken to promote the spread of new and renewable energy such as solar heat, biomass and wind power, etc.

저에너지주택의 지열히트펌프시스템 냉·난방 성능분석 (Heating and Cooling Performance Analysis of Ground Source Heat Pump System in Low Energy House)

  • 백남춘;김성범;신우철
    • 설비공학논문집
    • /
    • 제28권10호
    • /
    • pp.387-393
    • /
    • 2016
  • A ground source heat pump system maintains a constant efficiency due to its stable heat source and radiant heat temperature which provide a more effective thermal performance than that of the air source heat pump system. As an eco-friendly renewable energy source, it can reduce electric power and carbon dioxide. In this study, we analyzed one year of data from a web based remote monitoring system to estimate the thermal performance of GSHP with the capacity of 3RT, which is installed in a low energy house located in Daejeon, Korea. This GSHP system is a hybrid system connected to a solar hot water system. Cold and hot water stored in a buffer tank is supplied to six ceiling cassette type fan coil units and a floor panel heating system installed in each room. The results are as follows. First, the GSHP system was operated for ten minutes intermittently in summer in order to decrease the heat load caused by super-insulation. Second, the energy consumption in winter where the system was operated throughout the entire day was 7.5 times higher than that in summer. Moreover, the annual COP of the heating and cooling system was 4.1 in summer and 4.2 in winter, showing little difference. Third, the outlet temperature of the ground heat exchanger in winter decreased from $13^{\circ}C$ in November to $9^{\circ}C$ in February, while that in summer increased from $14^{\circ}C$ to $17^{\circ}C$ showing that the temperature change in winter is greater than that in summer.

Modeling and validation of a parabolic solar collector with a heat pipe absorber

  • Ismail, Kamal A.R.;Zanardi, Mauricio A.;Lino, Fatima A.M.
    • Advances in Energy Research
    • /
    • 제4권4호
    • /
    • pp.299-323
    • /
    • 2016
  • Cylindrical parabolic solar concentrators of small concentration ratio are attractive options for working temperatures around $120^{\circ}C$. The heat gained can be utilized in many applications such as air conditioning, space heating, heating water and many others. These collectors can be easily manufactured and do not need to track the sun continuously. Using a heat pipe as a solar absorber makes the system more compact and easy to install. This study is devoted to modeling a system of cylindrical parabolic solar concentrators of small concentration ratio (around 5) fitted with a heat pipe absorber with a porous wick. The heat pipe is surrounded by evacuated glass tube to reduce thermal losses from the heat pipe. The liquid and vapor flow equations, energy equation, the internal and external boundary conditions were taken into consideration. The system of equations was solved and the numerical results were validated against available experimental and numerical results. The validated heat pipe model was inserted in an evacuated transparent glass tube as the absorber of the cylindrical parabolic collector. A calculation procedure was developed for the system, a computer program was developed and tested and numerical simulations were realized for the whole system. An experimental solar collector of small concentration, fitted with evacuated tube heat pipe absorber was constructed and instrumented. Experiments were realized with the concentrator axis along the E-W direction. Results of the instantaneous efficiency and heat gain were compared with numerical simulations realized under the same conditions and reasonably good agreement was found.

동적열해석프로그램을 이용한 대형할인매장의 에너지 소비 특성 분석 (The Energy Performance Analysis of Large Scale Store Using Dynamic Thermal Analysis Simulation Program)

  • 김병수;홍원표
    • 한국태양에너지학회 논문집
    • /
    • 제30권6호
    • /
    • pp.44-49
    • /
    • 2010
  • The purpose of this study is to analyze the situation of energy consumption and its characteristics in large scale store. The related survey is carried out in large scale store to investigate the energy consumption and energy use trend of heating, cooling, hot water, lighting, ventilation, equipments and others. The area of large scale discount store is about $65000m^2$, located in Daejeon. For Annual Energy Analysis of building, We surveyed used energy for 1 year and simulated using a building energy simulation(TRNSYS 16). The results of this study are as follows. 1)The amount of annual total energy consumption are 18615.244MWh/yr(286.4KWh/$m^2yr$), The rate of heating, cooling and base energy(for hot water, lighting, ventilation, equipments, cooking and others) is 3054MWh/yr(47kWh/$m^2yr$), 5660.09MWh/yr(87.08kWh/$m^2yr$), 9900.47MWh/yr(152.31KWh/$m^2yr$) respectively. The total used energy is higher than others building in Korea. Especially, The energy consumption of large scale store is very depends on operating period and pattern such as space temperature, occupancy, lighting system, equipments operating schedule and etc.

진공관식 태양열 집열 튜브의 열성능 비교 분석 (A Comparative Analysis on the Thermal Performance of Solar Vacuum Collector Tubes)

  • 현준호;천원기
    • 한국태양에너지학회 논문집
    • /
    • 제23권3호
    • /
    • pp.15-22
    • /
    • 2003
  • This study deals with the collection of solar energy and its storage in evacuated tubular collector systems for different types of header design, flow passage and heat transfer devices. In order to elicit the most efficient combination of header design, flow passage, heat transfer hardware and operating conditions, a series of tests were done for the four different types of solar collectors utilizing vacuum tubes. The systems studied here either has the evacuated collector tubes with a metal cap on one end or the all-glass evacuated solar collector tubes These evacuated tubular collectors are known to be more efficient than the flat-plate ones in both direct and diffuse solar radiation. Test results show that the system comprised of the all-glass evacuated tubes with U-shaped copper pipes inside outperforms the other configurations. Especially, a rolled copper sheet tightly placed along the inner surface of each inner tube enhances heat transfer between the heated collector surface and the water contained in the U-shaped copper pipe.

하수열을 이용한 냉난방시스템에 관한 연구 (Heating and Cooling System using the Sewage Source Absorption Refrigeration and Heat Pump Cycle)

  • 이용화;신현준;윤희철;박현건
    • 한국태양에너지학회 논문집
    • /
    • 제27권4호
    • /
    • pp.19-26
    • /
    • 2007
  • This paper concerns the study of absorption refrigeration and heat pump cycle to use sewage. Simulation analysis on the double-effect absorption refrigeration cycle with parallel and two-stage heat pump cycle has been performed. The working fluid is Lithium Bromide and water solution. The absorption refrigeration cycle use sewage as a cooling water for the absorber and condenser, and absorption refrigeration cycle does that as a chilled water for the evaporator of the first stage cycle. And the two-stage cycle consists of coupling double-effect with parallel and single effect cycle so that the first stage absorber and condenser produces heating water to evaporate refrigerant in the evaporator of the second stage. The effects of operating variables such as a absorber temperature on the coefficient of performance have been studied for absorption refrigeration and heat pump cycle.

2단 압축 수열원 열펌프 시스템의 부분부하 운전특성에 관한 연구 (A study on the part-load performance of 2-stage water source heat pump)

  • 이영수;백영진
    • 한국지열·수열에너지학회논문집
    • /
    • 제5권1호
    • /
    • pp.13-17
    • /
    • 2009
  • The river water heat source heat pump has the advantage in the performance compared to air source heat pump. In this study, an experimental study on a 2-stage heat pump, which is designed to utilize a river water heat source, were carried out. Generally, a heat pump is designed for maximum capacity rate, but it actually operates at part load condition in most cases. Therefore, an information on the part-load characteristic is very important in view of the system overall performance. In this study, part-load performance tests of a R134a 2-stage compression heat pump were carried out over the river water and supply heating water temperature changes.

  • PDF