• Title/Summary/Keyword: Solar tracking system

Search Result 381, Processing Time 0.022 seconds

Regulated Peak Power Tracking (RPPT) System Using Parallel Converter Topologies

  • Ali, Muhammad Saqib;Bae, Hyun-Su;Lee, Seong-Jun;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.870-879
    • /
    • 2011
  • Regulated peak power tracking (RPPT) systems such as the series structure and the series-parallel structures are commonly used in satellite space power systems. However, these structures process the solar array power or the battery power to the load through two cascaded regulators during one orbit cycle, which reduces the energy transfer efficiency. Also the battery charging time is increased due to placement of converter between the battery and the solar array. In this paper a parallel structure has been proposed which can improve the energy transfer efficiency and the battery charging time for satellite space power RPPT systems. An analogue controller is used to control all of the required functions, such as load voltage regulation and solar array stabilization with maximum power point tracking (MPPT). In order to compare the system efficiency and the battery charging efficiency of the proposed structure with those of a series (conventional) structure and a simplified series-parallel structure, simulations are performed and the results are analyzed using a loss analysis model. The proposed structure charges the battery more quickly when compared to the other two structures. Also the efficiency of the proposed structure has been improved under different modes of solar array operation when compared with the other two structures. To verify the system, experiments are carried out under different modes of solar array operation, including PPT charge, battery discharge, and eclipse and trickle charge.

Development of Tracking Method and MPPT Controller of Photovoltaic System (태양광 발전 시스템의 추적식 및 MPPT 제어기 개발)

  • Jung, Dong-Hwa;Choi, Jung-Sik;Ko, Jae-Seop
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.8
    • /
    • pp.54-63
    • /
    • 2007
  • This paper is proposed a novel method that computed approximately maximum power of photovoltaic system and solar tracking method. Proposed novel is linear reoriented coordinates method(LRCM), this paper is proposed new mathematical dynamic model using LRMC and DC dynamic equation. LRCM has the advantage that is decreased calculating time, decides optimal voltage and maximum power that generates continually. Furthermore solar tracking method is improved over 50[%] photovoltaic efficiency than fixed method. This paper is proposed MPPT using LRCM and solar tracking method using program method that is adequate domestic conditions, prove verify of proposed method through experiment.

A Study on The PV System with Solar Tracking (태양광추적장치를 이용한 태양광발전시스템의 연구)

  • Oh, M.B.;Kang, S.Y.;Na, J.D.;Kim, B.C.;Cho, G.B.;Baek, H.L.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.717-719
    • /
    • 2005
  • This paper summarizes the results of these efforts by of offering the PV generation system with solar tracking. The status of PV generation system with solar tracking components and interconnection and effects are summarized. Hence this paper duscusses only points that might be useful for application.

  • PDF

Demonstration Research of Photovoltaic System with Solar Reflectors (반사판을 이용한 태양광발전시스템 실증연구)

  • Kim, Yong-Sik;Kang, Gi-Hwan;Sim, Sang-Yong;Lee, Hoo-Rock;Lee, Jin-Seob;Hong, Jin-Ki
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.64-69
    • /
    • 2009
  • This paper aims at enhancing the electric production efficiency of photovoltaic(PV) system. The electrical power of PV system is proportional to light intensity on a PV module surface. In this paper, we apply two types of systems to enhance power generation efficiency. First, of all, concentring sunlight using specular surface and one-axis tracking system which traces the sun with vertical direction are applied in this project. From this, we analyze the fixed type method and power generation efficiency.

Design of the Unmanned Solar Vehicle with Quick Response of Maximum Power Point Tracking (최대 전력점 추종의 속응성을 고려한 무인 태양광 자동차 시스템 설계)

  • Shin, Yesl;Lee, Kyo-Beum;Jeon, Yong-Ho;Song, Bong-Sob
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.376-386
    • /
    • 2013
  • This paper proposes an improved Maximum Power Point Tracking method and design methods of unmanned solar vehicle system by parts of hardware, unmanned driving control and power conversion. The hardware design is offered on the weight reduction and structural reliability by using structural analysis software. The technique of curve fitting is applied to unmanned control system due to minimizing the vehicle's behavior. Furthermore, lateral controller applying actuator dynamics is robust enough to prevent performance degradation by measurement noise regarding position and heading angle. The power conversion system contains battery charger system and tapped-inductor boost converter. In the battery charger system, variable step-size MPPT is conducted for quick response of maximum power point tracking. The validity of the proposed algorithm are verified by simulations and experiments.

Additional power conservation in 200W power plant with the application of high thermal profiled cooling liquid & improved deep learning based maximum power point tracking algorithm

  • Raj G. Chauhan;Saurabh K. Rajput;Himmat Singh
    • Advances in Energy Research
    • /
    • v.8 no.3
    • /
    • pp.185-202
    • /
    • 2022
  • This research work focuses to design and simulate a 200W solar power system with electrical power conservation scheme as well as thermal power conservation modeling to improve power extraction from solar power plant. Many researchers have been already designed and developed different methods to extract maximum power while there were very researches are available on improving solar power thermally and mechanically. Thermal parameters are also important while discussing about maximizing power extraction of any power plant. A specific type of coolant which have very high boiling point is proposed to be use at the bottom surface of solar panel to reduce the temperature of panel in summer. A comparison between different maximum power point tracking (MPPT) technique and proposed MPPT technique is performed. Using this proposed Thermo-electrical MPPT (TE-MPPT) with Deep Learning Algorithm model 40% power is conserved as compared to traditional solar power system models.

Development of Fuzzy Controller for High Performance Solar tracking of PV System (PV 시스템의 고효율 태양 추적을 위한 퍼지제어기 개발)

  • Ko, Jae-Sub;Choi, Jung-Sik;Kim, Do-Yeon;Jung, Byung-Jun;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.315-318
    • /
    • 2008
  • In this paper proposed the solar tracking system to use a fuzzy control order to increase an output of the PV(Photovoltaic) array. The solar tracking system operated two DC motors driving by signal of photo sensor. The control of dual axes is not an easy task due to nonlinear dynamics and unavailability of the parameters. Recently, artificial intelligent control of the fuzzy control, neural-network and genetic algorithm etc. have been studied. The fuzzy control made a nonlinear dynamics to well perform and had a robust and highly efficient characteristic about a parameter variable as well as a nonlinear characteristic. Hence the fuzzy control was used to perform the tracking system after comparing with error values of setting-up, nonlinear altitude and azimuth. In this paper designed a fuzzy controller for improving output of PV array and evaluated comparison with efficient of conventional PI controller. The data which were obtained by experiment were able to show a validity of the proposed controller.

  • PDF

Genetic algorithm-based ultra-efficient MPP tracking in a solar power generation system (유전자 알고리즘 기반 무결점 초고효율계통 연계형 인버터개발)

  • Choi, Dae-Seub;Song, Min-Jong;Kim, Young-Min
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.212-215
    • /
    • 2006
  • This paper a new method which applies a genetic algorithm for determining which sectionalizing switch to operate in order to solve the distribution system loss minimization re-configuration problem. In addition, the proposed method introduces a ultra efficient MMP tracking in a solar power generation system.

  • PDF

Genetic algorithm-based ultra-efficient MPP tracking in a solar power generation system (유전자 알고리즘 기반 무결점 초고효율계통 연계형 인버터개발)

  • Choi, Dae-Seub;Song, Min-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.394-395
    • /
    • 2006
  • This paper a new method which applies a genetic algorithm for determining which sectionalizing switch to poerate in order to solve the distribution system loss minimization re-configuration problem. In addition, the proposed method introduces a ultra efficient MMP tracking in a solar power generation system.

  • PDF

Genetic algorithm-based ultra-efficient MPP tracking in a solar power generation system (유전자 알고리즘 기반 무결점 초고효율계통 연계형 인버터개발)

  • Choi, Dae-Seub;Song, Min-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.75-77
    • /
    • 2006
  • This paper a new method which applies a genetic algorithm for determining which sectionalizing switch to poerate in order to solve the distribution system loss minimization re-configuration problem. In addition, the proposed method introduces a ultra efficient MMP tracking in a solar power generation system.

  • PDF