• Title/Summary/Keyword: Solar system

Search Result 4,082, Processing Time 0.031 seconds

지열히트펌프 보조열원식 태양열 난방급탕 시스템 작동에 관한 연구 (Study on the Operation of the Solar Heating System with Ground Source Heat Pump as a Back-up Device)

  • 김휘동;백남춘;이진국;신우철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.197.2-197.2
    • /
    • 2010
  • The study on the operation characteristics of solar space and water heating system with ground source heat pump (GSHP) as a back-up device was carried out. This system, called solar thermal and geothermal hybrid system (ST/G), was installed at Zero Energy Solar House II (KIER ZeSH-II) in Korea Institute of Energy Research. This ST/G hybrid system was developed to supply all thermal load in a house by renewable energy. The purpose of this study is to find out that this system is optimized and operated normally for the heating load of ZeSH-II. Experiment was continued for seven months, from October to April. The analysis was conducted as followings ; - the contribution of solar thermal system. - the appropriateness of GSHP as a back-up device. - the performance of solar thermal and ground source heat pump system respectively. - the adaptation of thermal peak load - the operation characteristics of hybrid system under different weather conditions. Finally the complementary measures for the system simplification was referred for the commercialization of this hybrid system.

  • PDF

BIPV를 위한 단축 구동 태양광 전력 발생장치 제작에 관한 연구 (A Study on the Manufacture of Single Axis Tracking Solar Power Generation System for BIPV)

  • 조재철;이진
    • 전기학회논문지
    • /
    • 제61권2호
    • /
    • pp.335-338
    • /
    • 2012
  • Recently, the energy has been used much more than ever, but there has been many problems including atmospheric pollution. So we need alternative energy resources, which are solar heat, solar light, wind power, small water power, etc. The field, which is most popular these days, is the energy source by solar light which transform electric energy using the solar cell and it is available with many researches. In this paper, we manufactured the solar power generation system over 90W using solar module which was 9.90V for Voc, 0.93 A for Isc, 8.64 V for Vmp, 0.75 A for Imp, 6.5 W for power. System was controlled by step motor with worm gear to operate optimum condition between $0^{\circ}{\sim}70^{\circ}$ angle. This system was very effective in tracking space use because it need less space than general solar module.

소형 태양광 무인 항공기의 비행실험에 관한 연구 (Study on Flight Test of Small Solar-Powered UAV)

  • 안일영;배재성;박상혁
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.313-318
    • /
    • 2012
  • In the present study, the preliminary study on a small solar-powered RC airplane are performed for the development of a long-endurance solar-powered UAV. Solar energy enables the solar-powered UAV to fly longer or eternally. The solar-powered UAV transfers the solar energy to electric energy and this energy is used for the flight and the battery charge. To increase the flying time, the efficiency of the solar-cell power system must be increased and the required power for flight must be minimized. Hence, the system integration including solar cell and controller, the power system design, and the aerodynamic and structural designs of the UAV is very important. The present study have performed the design, manufacture, and flight test of the small solar-powered UAV for the preliminary study of the long-endurance solar-powered UAV. From this study, the system integration technology of the solar-powered UAV design is established, and the possibility and the issue points for the development of the long-endurance solar-powered UAV are discussed.

  • PDF

태양광에너지 시스템이 결합된 HTS 자속펌프의 제작 및 예비실험 (Fabrication and Test of HTS Flux Pump Combined with Solar Energy System)

  • 김대욱;정윤도;조현철;윤용수;김현기;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제13권1호
    • /
    • pp.22-26
    • /
    • 2011
  • As new one of superconducting power supplies, we proposed an HTS flux pump utilized a solar energy system. As an eternal electric energy can be converted by the solar system, the solar energy system is promisingly applied as an energy source in the power applications. Especially, since the solar energy system played a role in conventional utility power, total power consumption of the flux pump system are provided by solar energy. That means its operating efficiency is remarkably improved compared with developed flux pumps. A solar energy system is comprised of solar panel, photo-voltaic (PV) controller, converter and battery. The HTS flux pump consists of an electromagnet, two thermal heaters and a Bi-2223 magnet. In this paper, we describe the possibility the fusion technology between superconducting power supply and solar energy system. As a fundamental step, the fabrication, structure and experimental results are explained.

유량제어방식에 따른 태양열 급탕시스템의 열성능 평가 (Thermal Performance Evaluation of Solar Hot Water System according to Flow Rate Control)

  • 백남춘;신우철
    • 한국태양에너지학회 논문집
    • /
    • 제31권5호
    • /
    • pp.140-145
    • /
    • 2011
  • In this study, the performance and behavior of solar heating system according to the system control scheme, variable flow control (proportional control) and constant flow control (on-off control) was carried out by experiment. The on-off control is used generally for solar thermal system by now. But the proportional control is used for the solar district heating system which is supplied the higher temperature of water than that of desired. The proportional control logic that pump speed is varied in an attempt to maintain a specified outlet temperature of solar heating system was developed and tested for the use widely for the small and medium solar thermal system. The results are as following. First, the proportional controller which is made here could be adopted the characteristics for setting temperature control. Second, the proportional control is better than the on-off control in the side of the performance of thermal stratification in storage tank. Third, the operating energy(electricity consumption by pump) of solar thermal system can be saved more than 60% using the proportional control comparing to the on-off control.

PVT 시스템의 PV 모듈 및 태양열 집열기 대비 성능 및 효율 비교분석 (The Performance and Efficiency Analysis of a PVT System Compared with a PV module and a Solar collector)

  • 어승희;이정빈;최윤성;김대현
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.60-67
    • /
    • 2011
  • A photovoltaic/thermal(PVT)solar system is the solar technology that allows for simultaneous conversion of solar energy into both electricity and heat. This paper compared the performance of PVT system with a conventional PV module and solar collector and analyzed electrical and thermal efficiency of PVT system in terms of solar irradiance and inlet temperature of the working fluid. Based on the experimental data, thermal and electrical efficiencies of the glazed PVT system were 57.9% and 14.27% under zero reduced temperature condition which were lower by 13.6% than the solar thermal absorber plate and by 0.08% than the PV module respectively. For the unglazed PVT system, it had lower thermal efficiency than the solar thermal absorber plate but higher electrical performance than the PV module due to the cooling effect by the working fluid. However, total efficiency of the glazed PVT system was 72.2% which was higher than combined efficiencies of the solar collector and PV module. Besides, total efficiency of the PVT system would be much higher if calculated based on unit area.

  • PDF

Spatial Decision Support System for Residential Solar Energy Adoption

  • Ahmed O. Alzahrani;Hind Bitar;Abdulrahman Alzahrani;Khalaf O. Alsalem
    • International Journal of Computer Science & Network Security
    • /
    • 제23권6호
    • /
    • pp.49-58
    • /
    • 2023
  • Renewable energy is not a new terminology. One of the fastest growing renewable energies is solar energy. The implementation of solar energy provides several advantages including the reduction of some of the environmental risks of fossil fuel consumption. This research elaborated the importance of the adaption of solar energy by developing a spatial decision support system (SDSS), while the Residential Solar Energy Adoption (RSEA) is an instantiation artifact in the form of an SDSS. As a GIS web-based application, RSEA allows stakeholders (e.g., utility companies, policymakers, service providers homeowners, and researchers) to navigate through locations on a map interactively. The maps highlight locations with high and low solar energy adoption potential that enables decision-makers (e.g., policymakers, solar firms, utility companies, and nonprofit organizations) to make decisions. A combined qualitative and quantitative methodological approach was used to evaluate the application's usability and user experience, and results affirmed the ability of the factors of utility, usefulness, and a positive user experience of the residential solar energy adoption of spatial decision support system (RSEA-SDSS). RSEA-SDSS in improving the decision-making process for potential various stakeholders, in utility, solar installations, policy making, and non-profit renewable energy domains.

지하공간의 자연환기를 위한 태양 굴뚝 시스템의 응용 (Application of Solar Chimney System for Natural Ventilation in Underground Space)

  • 장향인;서승직
    • 한국태양에너지학회 논문집
    • /
    • 제30권2호
    • /
    • pp.87-95
    • /
    • 2010
  • This study analyzed the performance of solar chimney system for natural ventilation in underground space. A mathematical model of the solar chimney was proposed in order to predict its performance under varying parameters and Korea climatic condition. Steady state heat transfer equations were set up using a energy balanced equations and solved using a inverse matrix method. Numerical simulation program to analyze system was developed by using MATLAB. As the results, the ventilation performance of the solar chimney was determined by the temperature difference of air channel and inlet, and the temperature difference was influenced by insolation, stack height and distance of air gab. Also the solar chimney system can provide $262.9m^3/h$ of annual average ventilation rate. Because seasonal differences of ventilation rate was calculated within 25%, the solar chimney system can be used for every season in Korea climatic condition. Through this study, performance of solar chimney system for natural ventilation was verified by numerical method. Consequently, the solar chimney system is proved to be effective device for natural ventilation utilizing at all times, and the additional studies should be made through the experimental method for imagineering and commercialization.

태양열 발전시스템 경제성 분석 (Economic Assessment of Solar Thermal Power System)

  • 김진수;강용혁;김종규
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.25-29
    • /
    • 2008
  • Economic assessment of solar thermal power generation systems was carried out by calculating the levelized electricity cost. Four different commercial (or near commercial) solar thermal power systems (parabolic trough system, power tower system with saturated steam, power tower system with molten salts, and dish-stilting system) were considered for assessment. The assessment also included sensitivity analysis covering the effects of system capacity, direct normal insolation, and the system efficiency.

  • PDF

Solar Power System의 인버터 토폴로지 및 제어 모드에 따른 안정도 연구 (Stability of Solar Power System on the Control Modes of a Forced-Commutated Inverter and a Line-Commutated Inverter)

  • 이승현;정교범;조보형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.534-537
    • /
    • 1997
  • Solar power systems have become popular in the modem electric energy system. In order to supply the DC power, generated by solar cells, to the electric power system, the solar power system requires DC-to-AC power conversion. A line-commutated inverter or a forced-commutated inverter can be used in the DC-to-AC power conversion. Because of the nonlinear V-I characteristics of the solar cells, multiple operating points determined by the control mode of the inverter exist in the DC V-I state plane of the solar power system. In this paper, the stability of utility-interactive solar power system with a line-commutated inverter is analyzed at various operating points, using the eigenvalue method and the state-plane analysis technique. The stability of a forced-commutated inverter case is also anaiyzed and compared to that of the line-commutated inverter case.

  • PDF