• 제목/요약/키워드: Solar shading device

검색결과 35건 처리시간 0.019초

외부 차양장치의 적용실태에 관한 통계적 분석 (Statistical Analysis on Application of External Solar Shading Devices)

  • 김효중;이철성;윤종호
    • KIEAE Journal
    • /
    • 제16권5호
    • /
    • pp.65-71
    • /
    • 2016
  • Purpose : The solar shading device carries out roles in a reduction of the cooling load and an improvement of the thermal comfort of occupants by adjusting incident solar radiation. In addition, The shading device enhances the visual sensation comfort by controlling the optical properties. In order to improve building performance and comfort of occupancy, interests in application of the shading devices are getting increasing. This study investigated the application and effectiveness of the external shading device design using statistical analysis. The outcome of this paper could be utilized for the realization of status quo and for an estimation of effectiveness of the shading device Method : The period of data gathering was between 2003 and 2014 and total 459 cases of practical building project were investigated. Firstly, this study defined qualification of the shading devices; the shading device should have minimum protruding lengths of 150mm to outside and have the function of shading control. This paper investigated application rate of the shading device in real project, regional rate of application, annual change of application, materials and types. Result : The statistical analysis showed that the application rate of shading devices was 25.7% in total 459 building design projects. The application rate in central and southern region was 25.3% and 27.0% respectively. Meanwhile, Jeju region showed 22.2%, which was the lowest rate although this area needs more shading devices. The application number of the shading device was the smallest in 2007, but the rate gradually increased after that. The applications was the largest in 2014 due to growing interest of the shading devices in the building.

접이식 차양장치에 관한 이론적 연구 (A Theoretical Study on a Folding Shading Device)

  • 백상훈;최원기;서승직
    • 한국태양에너지학회 논문집
    • /
    • 제29권3호
    • /
    • pp.28-36
    • /
    • 2009
  • The majority of fixed shading devices are installed in the exterior of a building in order to dissipate the heat absorbing from the sun and to prevent the direct sunlight. In designing external shading devices for windows, many requirements must be considered simultaneously; solar geometry, optimum energy performance, multi-purpose usage and design factors etc.. In order Lo satisfy these requirements, we suggests the folding shading device and its optimum design methodology. Also we analyzed the thermal performance using the IES_VE program according to various operating modes and compared with existing shading devices. The results show that proposed device reduce about $1.90{\sim}22.40%$ in cooling load and about $1.09{\sim}24.22%$ in heating load in comparison with existing ones.

시각적 쾌적성을 고려한 차양장치의 조명에너지 성능 분석 방법에 관한 연구 (A Study on the Lighting Energy Performance Analysis of a Shading Device based on Visual Comfort)

  • 오민석;이주윤;김기철
    • 한국태양에너지학회 논문집
    • /
    • 제38권6호
    • /
    • pp.1-14
    • /
    • 2018
  • The shading device on the window of the building can be an passive solution to reduce the cooling load and lighting energy, as well as improving the indoor comfort. It is also an architectural element that must be considered for building energy-efficient buildings such as eco-buildings and zero-energy buildings. However, due to various building environments and various shading devices, the installation of excessive shade may lead to the risk of losing the effectiveness of windows. In this study, we propose a method for optimal automatic control of shading device and evaluate its effectiveness by energy analysis of several shading devices.

하계 아트리움 실내환경 평가 및 개선방안에 관한 연구 (A Study on the Indoor Environment Evaluation and Improvement of the Atrium in Summer)

  • 남중우;권경우;원종서
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.216-221
    • /
    • 2009
  • The purpose of this study is to evaluate and improve the indoor environment of the Atrium in summer. Thermal and daylighting performance was evaluated quantitatively by integrated simulation according to 4 types of shading device.(none shading, opaque shading, translucent shading, internal blind) As a result, with internal blind, the effects of isolating solar radiation and reducing indoor temperature are estimated to be decreased by about 90% and $3.2^{\circ}C$. In the outer shading device which is controled according to solar altitude, the effects of isolating solar radiation and reducing indoor temperature are revealed to be decreased by about 82% and $4.9^{\circ}C$.

  • PDF

사무소건물의 가동식 수평차양에 대한 연구 (A Study on Design of Movable Horizontal Shading Device for Office Building)

  • 김미현;서승직
    • 한국태양에너지학회 논문집
    • /
    • 제28권2호
    • /
    • pp.50-57
    • /
    • 2008
  • This study intends to evaluate the effect on indoor environment(annual thermal load, sunshine)by the application of the movable horizontal shading device on summer and winter season. For these purpose, we supposed the models which are composed of the several horizontal shading devices. Then we analyzed the simulation using the IES5.5.1 and Seoul weather data. The results of this study are as follows: 1) The proper length, angle of horizontal shading device is 2.1m, 28 degree, respectively. 2) The decreasing rate of the annual load of the Movable Horizontal Shading Model(MHSM) in comparison with the No Shading Model(NSM) & Conventional Horizontal Shading Model(CHSM) is 31.11%, 6.63% respectively. 3) The decrease of sunshine of the MHSM on summer season is effective the alleviation of visual displeasure. On the other hand, the increase of sunshine of the MHSM on winter season is effective the psychological comfort. Further study is to be required the sensitivity analysis on the various shading length for the realistic proper shading length.

공동주택 거주자의 실내 차양장치 사용행태에 관한 연구 (Occupants Control Patterns of Indoor Shading Devices in Apartment Buildings)

  • 이윤정;김정태
    • 한국태양에너지학회 논문집
    • /
    • 제34권3호
    • /
    • pp.12-20
    • /
    • 2014
  • There is no comprehensive consensus of the control patterns people op::rate shadings or the motivating factors that influence their decisions. Patterns of shading devices use can affect the energy consumption of buildings. Therefore, this study aims to analyze shading device usage patterns based on the physical factors that can affect occupants behavior. First, control patterns of indoor shading devices in apartment buildings were monitored by taking pictures. Next, frequency of shading device use together with their shading portions was analyzed based on two physical factors such as window orientation and floor level. The results showed that about 35% of the monitored apartment buildings utilized indoor shading devices. Also, the south-facing apartments were more dynamically used than their east-facing counterparts. On the contrary, there was no general trend in regards to the shading operation patterns.

하절기 복사환경 관측을 통한 수목과 일사차폐 막 구조물의 자연냉각효과 (Analysis of Passive Cooling Effect of Membrane Shading Structure and the Tree by Field Observations in the Summer)

  • 최동호;이부용
    • 한국태양에너지학회 논문집
    • /
    • 제27권4호
    • /
    • pp.137-146
    • /
    • 2007
  • This study is about the passive cooling effects of three outdoor solar shading facilities as trees, pergola with wistaria vine and membrane shading structure, which are expected to provide cool spots in the summer. Field observations of measuring thermal environment of selected facilities is executed. Thermal environment measuring was categorized as short wave radiation, long wave radiation, net radiation, globe temperature, surface temperature measured by infrared camera. Heat transfer mechanism is analyzed with overall data from field measurement. Results from this study are as below; 1) Radiation balance measured on shaded surface under membrane shading structure was 17%($86W/m^2$) of the unshaded surface radiation balance($511W/m^2$). 2) Surface temperature comparison between vegetation and membrane of the shading structure is performed at 3 o'clock in the afternoon. Surface temperature of vegetation was same as air temperature and that of membrane was $5^{\circ}C$ higher than air temperature. Vegetation transpiration is considered as the causing factor which make those differences. 3) Results from this study could be used as fundamental data for reducing heat island phenomena and continuos research on this subject would be needed.

발코니 설치식 가동형 차양겸용 BIPV 디자인과 성능연구 (Movable BIPV Shading Device Design for Apartment Building Balcony)

  • 진경일;윤종호
    • 한국태양에너지학회 논문집
    • /
    • 제30권5호
    • /
    • pp.85-92
    • /
    • 2010
  • At the beginning the 21st century, we are interested in renewable energy especially photovoltaic. So, we have been installed PV at the building roofs so that we call it building integrated photovoltaic. But strictly speaking, installing the PV on the roof is not building integrated. There are few BIPV designs especially for balcony. In the apartment building, roof is good installing place for PV, but its area was limited. Now a day, built apartment building's heights are more and more increased so that the performance of installed PV on the roof cannot be enough to use even the public use. Thereby, we need the new space in the building to install the PV except the building roof. This study suggests the building facade balcony as a new space to install the PV with building integrated PV design. Hence, in this study, we are designed the movable BIPV shading device for apartment building balcony, and verified its performance with computer simulation. Developed device in this study can works as an electronic generation device and an overhang on the side balcony. As a result, the electronic generation performance of device contributes 15~30% to each apartment unit. The more unit width increase, the better contributed device generates.

내측 블라인드의 하절기 일사열 차폐 성능 비교 (Comparing Solar Heat Shading Performances of Internal Blinds in the Summer)

  • 박은미;최동호;박민용;이경희
    • 한국태양에너지학회 논문집
    • /
    • 제34권6호
    • /
    • pp.75-83
    • /
    • 2014
  • Heat loss through windows and doors occupies 20 to 45% of the total heat loss in building. It accounts for a large proportion of the total heat loss in building. In order to suppress the amount of heat flow through the windows and doors were considered actions such as reinforcement of insulation performance of window, adoption of low-e glass, and installation of solar heat shading device. The Purpose of this study is to compare solar heat shading performances of 3 types of internal blinds in the summer. In order to verify the solar heat shading performances of the blinds, a roll blind, blind A(Venetian blind) and blind B(Daylight guiding venetian blind)were installed in the four rooms with the same environmental conditions. As a result of the experiment, the blind B, blind A, roll blind showed an excellent performance in that order. Its because the blind B is made of aluminum materials coated with special paints on surface. It doesn't converted to long wave by short wave light. and it is reflected to short wave to outside.

Analysis of energy and daylight performance of adjustable shading devices in region with hot summer and cold winter

  • Freewan, Ahmed A.;Shqra, Lina W.
    • Advances in Energy Research
    • /
    • 제5권4호
    • /
    • pp.289-304
    • /
    • 2017
  • Large glazed surfaces and windows become common features in modern buildings. The spread of these features was influenced by the dependence of designers on mechanical and artificial systems to provide occupants with thermal and visual comfort. Countries with hot summer and cold winter conditions, like Jordan, require maximum shading from solar radiation in summer, and maximum exposure in winter to reduce cooling and heating loads respectively. The current research aims at designing optimized double-positioned external shading device systems that help to reduce energy consumption in buildings and provide thermal and visual comfort during both hot and cold seasons. Using energy plus, a whole building energy simulation program, and radiance, Lighting Simulation Tool, with DesignBuilder interface, a series of computer simulations for energy consumption and daylighting performance were conducted for offices with south, east, or west windows. The research was based on comparison to determine the best fit characteristics for two positions of adjustable horizontal louvers on south facade or vertical fins on east and west facades for summer and winter conditions. The adjustable shading systems can be applied for new or retrofitted office or housing buildings. The optimized shading devices for summer and winter positions helped to reduce the net annual energy consumption compared to a base case space with no shading device or with curtains and compared to fix shading devices.