• Title/Summary/Keyword: Solar shade

Search Result 69, Processing Time 0.027 seconds

Analyses on Sunshine Influence and Surface Freezing Section of Road using GIS (GIS를 이용한 도로의 일조영향 및 노면결빙구간 분석)

  • Lee Hyung Seok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.3
    • /
    • pp.293-301
    • /
    • 2005
  • In case of the roads that pass the mountain area, the cut sections or the tunnels are constructed. And In winter season it appears sunshine few in the specific segment, the shade is continued last and the freezing sections occur. So, the attention is necessary in traffic safety. This study was to evaluate the influence of sunshine and surface freezing sections expected in route plans of roads using GIS and makes alternative ideas in road stability security. After selecting 29 km sections of Donghae highway and creating a 3 dimensional terrain surface through the digital conversion of design plan data, it reflects the road alignment data of the same coordinates and a 3 dimensional road modeling is created. It set shadow time of road surface for the solar trace in the winter solstice in 20 minute interval. Shade areas are displayed and inputed in polygon data by manual vertorizing. Graphic and attribute data of this shade section is constructed in geodatabase of ArcCatalog. And it extracted the freezing section using intersect fuction of the GIS spatial analysis. By analyzing the winter meteorological data of temperature, rainfall, snowfall, humidity, and etc. and grasping dangerous freezing section of the road surface effectively, it will be able to make alternative ideas of the preliminary stability evaluation reflected in basic design.

A Study on Control Algorithms of Efficiency Improvement Device for PV System Operation using Li-ion Battery (리튬이온전지를 이용한 태양광전원의 운용효율향상장치의 제어 알고리즘에 관한 연구)

  • Park, Ji-Hyun;Kim, Byung-Mok;Lee, Hu-Dong;Nam, Yang-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.590-597
    • /
    • 2018
  • Recently, the installation of PV systems has been increasing due to the worldwide interest in eco-friendly and renewable solar energy. On the other hand, the output power of PV systems is influenced strongly by the surrounding weather conditions. In addition, the entire operation efficiency of PV systems may be decreased considerably even if only some of the PV modules are in the shade. In other words, the existing control method at which strings with modules in series are connected to an inverter may be not operated in the case that the string voltage in partial shade is lower than the operating range of the grid connected inverter. To overcome these problems, this paper proposes an operation efficiency improvement device of a PV system using a Li-ion battery, which can compensate for the voltage of each string in the PV system when it is partially shaded. In addition, this paper presents the modeling of the operation efficiency improvement device, including PV strings, Li-ion battery and a 3-Phase grid inverter based on the PSIM S/W. From the simulation results, it was confirmed that the proposed control method can improve the operating efficiency of PV systems by compensating for the string voltage with partial shade.

A study on a power plant using Dye-sensitized solar cells in low light environments (저조도 환경에서의 염료감응형 태양전지를 활용한 발전소자에 관한 연구)

  • Kim, Sun-Geum;Baek, Sung-June
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.267-272
    • /
    • 2021
  • Recently, attention has been focused on renewable energy and carbon neutrality to resolve fossil energy depletion and environmental problems. In addition, high-rise urban buildings and an increase in building energy are rapidly increasing. There are many restrictions on installing solar power in urban areas. In addition, as buildings become taller, a lot of low-light environments in which shade is formed occur. Therefore, in this study, we intend to develop a power plant capable of generating electric power in an outdoor low-light environment and indoor lighting environment. The power plant in a low-light environment used a dye-sensitized solar cell. A unit cell and a 20cm×20cm module were manufactured, and the electrical characteristics of the power plant were measured using light sources of LED, halogen lamp, and 3-wavelength lamp. The photoelectric conversion efficiency of the unit cell was 17.2%, 1.28%, 19,2% for each LED, halogen lamp, and 3-wavelength lamp, and the photoelectric conversion efficiency of the 20cm×20cm module was 10.9%, 8.7%, and 11.8%, respectively. In addition, the maximum power value of the module was 13.1mW, 15.7 mW, and 14.2 mW for each light source, respectively, confirming the possibility of power generation in a low-light environment

Heating Efficiency of Difference Heat Collection Methods for Greenhouse (유리온실의 태양열 집열방법별 집열효과)

  • 최영하;이재한;권준국;박동금;이한철
    • Journal of Bio-Environment Control
    • /
    • v.9 no.3
    • /
    • pp.166-170
    • /
    • 2000
  • Three methods for heat collection, which were the flat solar collector, two fan with radiator, and square pipe method, were studied to sue efficiently solar energy in the three different glasshouses for two years. The flat plate solar collector method was made use of the commercial solar collector with collection area of 24$m^2$, the method of two fans with radiators collected solar energy at the top of the glasshouse. An thermal storage tank was constructed underneath in teach glasshouses. When an area of 1,000$m^2$ was heated to the minimum temperature of 9$^{\circ}C$, the decrease rate of heating fuel for the flat plate solar collector, the fan attached radiator and the square pipe methods were 7%, 19% and 28% respectively. The flat plate solar collector method, which could be heated approximately 40-50$m^2$, was currently used by most of the farmer. Under the condition, the decrease rate of annual heating fuel was 14% which was not better for an economic annual heating fuel. If the fan with radiator method was operated, the use of installation and maintenance were required. So, it could not be good economic efficiency of solar heating. The heating efficiency of the square pipe method was relatively better thant those of the flat plate solar collector or the fan attached radiator. Since the cost of materials and its installation of the use of square pipe method was lower than any other method. However, corrosion of the pipe, greater shade in the greenhouse and strength against the square pipe were problems that should be overcome in the square pipe method.

  • PDF

An Analysis on Building Energy Reduction Effect of Exterior Venetian Blind According to Orientation and Reflectance of Slat (블라인드형 외부차양의 종류 및 반사율에 따른 건물에너지 저감효과 분석)

  • Kim, Jin-Ah;Yoon, Seong-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.28-34
    • /
    • 2013
  • It is essential to reduce building energy consumption in office building because government enact policy which encourages building energy certification from 2013. Office building has high cooling energy demand due to large glazed area of facade in these days. Shading devices can be an alternative of reducing high cooling energy demand. So, this study simulated a variety of exterior venetian blinds to know how much building energy be affected by orientation and reflectance of slat. The results of this study are based on Seoul weather data. The following is a summary of this study. 1) As a slat of venetian blinds has the lower reflectance, the more building energy reduced. Reflectance is usually affected by color and material of slat. In case reflectance is 0.2 reduce 4% of building energy than reflectance is 0.8. 2) Horizontal exterior venetian blinds are more effective than vertical exterior venetian blinds in all of orientation. Horizontal shape is average 16% more effective in shading effect than vertical shape. 3) In this case study, the most effective shading device is low reflectance horizontal exterior venetian blinds that result about 18% building energy reduction than no shade model. The results of this research can be used to plan shading devices for energy conservative office building.

Analysis of Performance of Balcony Integrated PV System (발코니 일체형 태양광발전시스템의 발전성능 분석)

  • Kim, Hyun-Il;Kang, Gi-Hwan;Park, Kyung-Eun;So, Jung-Hoon;Yu, Gwon-Jong;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.32-37
    • /
    • 2009
  • Photovoltaic(PV) permits the on-site production of electricity without concern for fuel supply or environmental adverse effects. The electrical power is produced without noise and little depletion of resources. So BIPV(Building-Integrated Photovoltaic) system have been increased around the world. Hereby the relative installation costs of the system will be relatively low compared to traditional installations of PV in high-rise buildings. This paper examined possibility of building integrated balcony PV system and analyzed both performance and problems of this system. The system is influenced by conditions such as irradiation, module temperature, shade and architectural component etc. If this BIPV system of 1.1kW is possible the natural ventilation in the summer case, the temperature of PV module decrease and then the efficiency of PV system increase generally. By the results, the annual averaged PR of BIPV system of cold facade type is about 74.7%.

Light intensity inside plastic house influences the growth and nutrient uptake of daughter plants in nursery and early stages after transplanting in strawberry propagation

  • Gab Soon Park;Hyoung Je Yoo;Gil Hwan Bae;Seung Ho Jeong;In Sook Park;Jong Myung Choi
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.697-706
    • /
    • 2022
  • The effect of varied light intensities on the growth of daughter plants during propagation and after transplant to raised beds were examined in 'Sulhyang' strawberry. To this end, four treatments in controlling solar radiation inside a plastic house were made: 55% retractable shading and 35, 55, and 75% fixed shading. The plastic house was shaded only from 11:00 to 16:00 in June and 10:00 to 16:00 in July to September for the treatment of 55% retractable shading. The mean solar radiation inside the plastic house in the retractable 55% shading treatment was 317 W·m-2 and those in the 35, 55, and 75% fixed shading treatments were 183, 165, and 116 W·m-2, respectively, at 10 o'clock in the morning. The 55% and 75% fixed shading resulted in taller daughter plants with wider leaf areas than 55% retractable shading. The retractable shading also showed higher leaf numbers, crown diameters, root weights, and fresh weights compared to fixed shading treatments. Regarding the inorganic element contents, daughter plants grown under 75% fixed shading had 1.35% total nitrogen content followed by 1.19% in 35% fixed shading, 1.14% in 55% fixed shading, 1.14% in open culture, and 1.10% in 55% fixed shading. After 54 days following the transplant of daughter plants to a raised bed, the fresh weight of the aboveground part was the heaviest in the 55% retractable shading and non-shading treatments. The 75% fixed shading treatment had the lowest fresh weight of the aboveground plant parts. The results of this study could be used for the production of high-quality daughter strawberry plants.

A Modified Perturb and Observe Sliding Mode Maximum Power Point Tracking Method for Photovoltaic System uUnder Partially Shaded Conditions

  • Hahm, Jehun;Kim, Euntai;Lee, Heejin;Yoon, Changyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.281-292
    • /
    • 2016
  • The proposed scheme is based on the modified perturb and observe (P&O) algorithm combined with the sliding mode technique. A modified P&O algorithm based sliding mode controller is developed to study the effects of partial shade, temperature, and insolation on the performance of maximum power point tracking (MPPT) used in photovoltaic (PV) systems. Under partially shaded conditions and temperature, the energy conversion efficiency of a PV array is very low, leading to significant power losses. Consequently, increasing efficiency by means of MPPT is particularly important. Conventional techniques are easy to implement but produce oscillations at MPP. The proposed method is applied to a model to simulate the performance of the PV system for solar energy usage, which is compared to the conventional methods under non-uniform insolation improving the PV system utilization efficiency and allowing optimization of the system performance. The modified perturb and observe sliding mode controller successfully overcomes the issues presented by non-uniform conditions and tracks the global MPP. Compared to MPPT techniques, the proposed technique is more efficient; it produces less oscillation at MPP in the steady state, and provides more precise tracking.

Analysis of Performance of Building Integrated PV System of Cold Facade type (Cold facade형 BIPV시스템의 발전성능 분석)

  • Kim, Hyun-II;Kang, Gi-Hwan;Park, Kyung-Eun;Yu, Gwon-Jong;Shu, Seung-Jik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.275-280
    • /
    • 2008
  • Photovoltaic(PV) permit the on-site production of electricity without concern for fuel supply or environmental adverse effects. The electrical power is produced without noise and little depletion of resources. So BIPV(Building-Integrated Photovoltaic) system have been increased around the world. Hereby the relative installation costs of the system will be relatively low compared to traditional installations of PV in high-rise buildings. This paper examined possibility of BIPV system of cold facade type and analyzed of performance of BIPV system of cold facade type. The system is influenced by conditions such as irradiation, module temperature, shade and architectural component etc. If this BIPV system of 1.1kW is possible the natural ventilation in the summer case, the temperature of PV module decrease and then the efficiency of PV system increase generally. By the results, the annual averaged PR of BIPV system of cold facade type is about 73.1%.

  • PDF

Effects of Difference in Tree Cover on Use and Cost of Heating and Cooling Energy in Residential Neighborhoods of Chuncheon (춘천시 주거지구내 수목피도의 차이가 난냉방에너지 이용 및 비용에 미치는 효과)

  • 조현길;안태원
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.2
    • /
    • pp.19-28
    • /
    • 1999
  • This study quantified shading, evapotranspiration and windspeed-reduction effects of trees on use and cost of heating and cooling energy in two residential neighborhoods of Chuncheon different in tree cover. Annual savings per residence of heating energy were approximately 1,210 MJ(1%) and those of cooling energy, 130 kWh(10%) in study district 1 having tree cover of about 10% . For district 2 with tree cover of about 20%, annual heating and cooling savings were 2,130 MJ(2%) and 180 kWh(19%) per residence, respectively. Trees annually saved energy costs by approximately ₩31,000 ($26, $1=₩1,200) per residence in district 1 and by ₩49,000($41) in district 2. One tree taller than 3 m resulted in annual energy savings of ₩8,000($7) in the study districts. Energy savings by trees in district 2, which had higher tree cover by 10% difference than district 1, were about 2 times greater than those in district 1. This implies that more tree plantings could enhance energy saving effects. Of the total costs saved, 58% was attributed to windspeed reduction and 47%, evapotranspiration. However, shading increased energy costs by 5% due to tree plantings at the wrong locations. Full tree plantings on the west and north of buildings and avoidance of shade-tree plantings of use of solar-friendly trees on the south are recommended to increase building energy savings efficiently.

  • PDF