• Title/Summary/Keyword: Solar energy transmittance

Search Result 148, Processing Time 0.026 seconds

Examination of the properties of Solar Glazing Materials (태양열투과체의 특성에 관한 고찰)

  • Lee, Jong-Ho;Yoon, Kyung-Hoon;Jeong, Joo-Hee;Auh, P.Chung-Moo
    • Solar Energy
    • /
    • v.2 no.2
    • /
    • pp.37-53
    • /
    • 1982
  • In general, glass has proven to be an effective glazing material, exhibiting extended service lifetime and high solar transmittance while remaining opaque to long wave thermal reradiation. Plastics, which possess higher solar transmittance than commercial glass, are lightweight and also cost competitive with glass. In this paper a survey of various glazing materials is presented, and the comparative analysis of their properties are perform ed in detail with special emphasis on double glazing materials, which can be adaptable to various passive solar systems.

  • PDF

Optimal Windows Transmittance by Energy Performance Analysis and Subjective Evaluation in office building (에너지성능분석 및 감성평가에 의한 오피스 창호의 적정 투과율 선정)

  • Kim, Byoung-Soo;Kim, Jung-Shin;Yim, Oh-Yon
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.3
    • /
    • pp.73-83
    • /
    • 2004
  • The purpose of this study is to select the optimal transmittance rate of windows in office buildings through subjective evaluation and energy performance analysis(computer simulation program ; DOE 2.1E). The results are as follows ; 1) In the subjective evaluation experiment, minimum transmittance of the glass is GE 30% and LT 70%, but the optimal transmittance rate is concluded in $40%\sim60%$. 2) As a result of the energy performance analysis, it is desirable for the building of consumptive with mainly air-conditioning to make transmittance as 40-60%. 3) Comparing foreign study on minimum and optimal transmittance rate is $25%\sim38%$, the minimum transmittance of this study is almost the same. But for the optimal transmittance rate, 20% more is needed for KOREAN.

An Experimental Study on Indoor Thermal Characteristics in accordance with the Use of Windows and Blinds in Double Skin Facade in Summer (이중외피에서 창문 개폐 및 블라인드 설치에 따른 하절기 실내 열환경 특성 변화 실험 연구)

  • Kim, Dong-Kyun;Yoon, Kap-Chun;Kang, Jae-Sik;Kim, Kang-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.59-67
    • /
    • 2011
  • This paper is focused on the effect of indoor temperature rise according to the use of windows and blinds in double skin facade in summer. For the experiment, we set up the mock-up of double skin facede and measuring temperature and solar radiation. Total 7 cases were used for measuring solar transmittance and indoor temperature rise. When the venetian blind was not installed, solar transmittance was 44.5%, and solar transmittance for the case that installed the venetian blind (angle 0) was 22.5%. Cases that opened inner and outdoor windows for ventilation showed lower indoor temperature rise than cases with closed windows. In addition, Case 5 (opened inner and outdoor windows with the venetian blind (angle 0) to reduce solar transmittance) indicated lower indoor temperature rise than Case 3(opened inner and outdoor windows). Consequently, Case 5 which uses inner and outdoor window for ventilation and venetian blind to reduce solar transmittance is the most effective way to reduce indoor temperature rise among all cases tested in this research.

Comparative Studies on Lighting Environment and Energy Performance depending on the Transmittance of Window and Slat Angle of Blind (창호의 투과율과 블라인드 슬랫각도에 따른 빛환경 및 에너지성능 비교 연구)

  • Sim, Se-Ra;Yoon, Jong-Ho;Shin, U-Cheul
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.256-263
    • /
    • 2011
  • Recently, curtain wall structure is constructed according to increasing high rise building. Glass is usually used in opening of curtain wall structure and window area ratio is finally increased. Excessive Daylighting and solar radiation by large window area ratio cause discomfort glare and add to cooling load in the case of office that is heavy on lighting and cooling. Therefore, this study suggests to use low transmittance window for solve those problems. Indoor lighting environment and building energy performance were analyzed by increasing transmittance from 10% to 90% and comparing fixed venetian blind. Consequently, the range of transmittance that is possible to daylighting and prevent discomfort glare. Secondary energy consumption is efficient in the case that transmittance is the range of from 20% to 50%, primary energy consumption is nice on from 20% to 40%. If those result put together, the range of window transmittance from 30% to 50% is proper in the office in lighting environment and energy consumption aspects.

  • PDF

A Study on Heating Load Analysis of Zero Energy Solar House Considering the Effective Transmittance of Window (창호의 유효투과율을 고려한 제로에너지 태양열 주택의 난방부하 분석에 관한 연구)

  • Son, Sun-Woo;Baek, Sang-Hun;Lee, Hyun-Soo;Baek, Nam-Choon;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.2
    • /
    • pp.62-69
    • /
    • 2009
  • To reduce the building energy consumption, the major advanced nations are conducting actively many researches on so called a "self-sufficient building(or other words zero energy building)" which can support its required energy by itself. Given this background, KIER(Korea Institute of Energy Research) built full size test-bed of the zero energy solar house in early 2001, and has studied on the self-sufficient heating load up to now. We analyse the sensitivity between the heating load and the solar radiation gain according to the change the effective transmittance of windows. The authors classified 9 cases by solar transmittance of glass. The results demonstrate the solar radiation amount is 0.466 MWh from the eastern zone of Fl.,1(the first floor), 0.332 MWh from Fl.,2(the second floor), 1.194 MWh form the southern zone of F1., and 0.822 MWh from the southern zone of Fl.,2 on the case 1(each cases are classified by window types). On the case 9, the solar radiation amount is 3.127 MWh, 2.662 MWh, 8.799 MWh and 6.078 MWh from the same condition. For the Fl.,1, the amount of Heat Load that is saved per year ranged 10.5 to 48%, and the reduction was anywhere from 0.2 to 17.9% for Fl.,2.

Analysis of Optical Characteristics of Transparent Glasses for PV and Glass-Glass Module Application (PV용 투명유리와 G/G모듈의 광학적 특성 평가 및 분석)

  • Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.8-13
    • /
    • 2008
  • In this study, we analyze the electrical optical characteristics of transparent glass for photovoltaic and glass-glass module application. The elemental facts from raw glass to laminated glass with solar cells are analyzed using UV spectrophotometer and spectroradiometer. From the data of transmittance and reflectance, the optimum PV module processing condition and selection of material for fabrication should be considered deeply for obtaining high module efficiency. Also we introduce two glasses which has 2%$\sim$4% higher transmittance using coating technology with anti-reflection material. From this experiment, we try to give some basic information for PV module manufacturing industry. The detail description is specified as the following paper.

Evaluation on the Solar Heat Gain Coefficient of Glazing System installed in internal shading device by experiments according to the NFRC 201 (NFRC 201 실험방법에 의한 내부 차양장치가 적용된 창호의 일사획득계수 평가)

  • Lim, Jae-Han;Song, Seung-Yeong
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.47-54
    • /
    • 2010
  • Recently the researchers has been interested in the development of the high performance windows such as solar control window using automatic shading devices, air-flow window, selective coating window. In order to assess the energy performance of total fenestration system, the net energy gains or losses through the glazings and windows should be evaluated. It depends on the thermal transmittance (U-value) and the total solar energy transmittance (SHGC, g-value). This study aims to measure the solar heat gain coefficient according to the NFRC 201 standard test method. In results, we could find the result of different SHGC of the glazing system with a different slat angles. The SHGC in case of $90^{\circ}$ of internal slat angle with regard to the window surface is about 0.56, that in case of $45^{\circ}$ is about 0.49 and that in case of $0^{\circ}$ is about 0.33. Significant dependence on the solar radiation intensity and incident angle was found in comparison of the measured and simulated SHGC.

Analysis of Factor on the Temperature Effect on the Output of PV Module (온도에 따른 PV모듈의 출력에 영향을 미치는 요소 분석)

  • Lim, Jong-Log;Woo, Sung-Cheol;Jung, Tae-Hee;Min, Yong-Ki;Won, Chang-Sub;Ahn, Hyung-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.365-370
    • /
    • 2013
  • Generally, photovoltaic modules consist of glass, EVA, Solar Cell, back sheet and ribbon. But EVA, solar cell, ribbon affect electric output with temperature. EVA is a change in the transmittance of light from the sun. In addition, the solar cell output is decreased with temperature and the ribbon increases resistance. Transmittance and reflectance of glass and EVA were measured. In this paper, the characteristics of the components of PV module as EVA and Glass, ribbon were studied by variable temperature. effects on material properties investigated. As a result, glass is independent in temperature variation. EVA was the reduction 1~4% in transmittance. Solar cell decrease 0.469[%/$^{\circ}C$] in electric output by temperature variation. Other factors was controlled in solar cell..

Functional Designs of Metal oxide for Transparent Electronics

  • Kim, Joondong;Patel, Malkeshkumar;Kim, Hong-Sik;Kim, Hyunki;Yadav, Pankaj;Park, Wanghee;Ban, Dongkyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.387.1-387.1
    • /
    • 2016
  • Transparent materials are necessary for most photoelectric devices, which allow the light generation from electric energy or vice versa. Metal oxides are usual materials for transparent conductors to have high optical transmittance with good electrical properties. Functional designs may apply in various applications, including solar cells, photodetectors, and transparent heaters. Nanoscale structures are effective to drive the incident light into light-absorbing semiconductor layer to improve solar cell performances. Recently, the new metal oxide materials have inaugurated functional device applications. Nickel oxide (NiO) is the strong p-type metal oxide and has been applied for all transparent metal oxide photodetector by combining with n-type ZnO. The abrupt p-NiO/n-ZnO heterojunction device has a high transmittance of 90% for visible light but absorbs almost entire UV wavelength light to show the record fastest photoresponse time of 24 ms. For other applications, NiO has been applied for solar cells and transparent heaters to induce the enhanced performances due to its optical and electrical benefits. We discuss the high possibility of metal oxides for current and future transparent electronic applications.

  • PDF

Solar Module Glass Coating Technology for Improvement of the transmittance (태양광 모듈용 Glass의 투과율 향상을 위한 Coating 기술 개발)

  • Jung, Jin-Su;Jung, In-Sung;Lee, Bum-Su;Jang, Jin-Ho;Ban, Seong-Tae;Kim, Jong-Il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.120.1-120.1
    • /
    • 2011
  • Increase the efficiency of PV modules for high-efficiency solar cells, light transmittance improvements, increasing the module, and much more research and development. Dual we light transmittance for photovoltaic module materials in low iron tempered glass in SiO2 using liquid AR implementation, light transmittance to solar modules to increase the efficiency of research.

  • PDF