• Title/Summary/Keyword: Solar battery

Search Result 367, Processing Time 0.021 seconds

Design of Hybrid System for Battery Charge·Discharge using Photovoltaic/Fuel cell (태양광/연료전지용 배터리 충·방전 하이브리드 시스템 설계)

  • Park, Bong-Hee;Jo, Yeong-Min;Choi, Ju-Yeop;Cho, Sang-Yoon;Choy, Ick;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.123-129
    • /
    • 2014
  • Photovoltaic and fuel cell systems can be used as power source in mobile robots. At this time the photovoltaic system generally generate power in daytime. The starting time of fuel cell is slower than the lithium battery. To compensate for these disadvantages, a battery charge-discharge system is used. Especially the bi-directional converter is used mainly in the charge-discharge method. The controller in a buck converter controls the input voltage of the converter to meet the maximum power point tracking(MPPT) performance. First of all, the simulations of hybrid system for battery charge-discharge system in each step simulated using solar and fuel cell modeling as input source in PSIM. Experiment of the buck and bi-directional converter system is conducted through using photovoltaic/fuel cel simulator(pCube) instead of solar and fuel cell. This hybrid system for battery charge discharge using photovoltaic/fuel cell generates emergency power for the communication system in mobile robot.

A Parasol-type Grid-connected Solar Power Generation System for Utilization of New and Renewable Energy (신.재생에너지 활용을 위한 연계 계통형 그늘막 태양광 발전 시스템)

  • Lee, Jae-Min;Lee, Chang-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.2
    • /
    • pp.230-236
    • /
    • 2009
  • In this paper, in order to utilize new and renewable energy a grid-connected parasol-type solar power generation system is presented. The proposed power system combining with commercial electric power system is designed to meet the need fur maximum power consumption and parasols for the people staying at beach during hot summer. Solar electric power can be charged in rechargeable batteries during day time and used to provide charged electric power to loads like lamps and fans during night time, A battery charge-discharge controller is required for the good performance of batteries to be charged. The presented battery controller is designed based on high performance microprocessor for precise charge-discharge operations. An alarm circuit to give notice of battery exchange time and other convenient functions are installed in the system. We implemented the proposed solar power generation system at East Sea beach during peak summer season to verify its productivity and performance by experiments.

A Solar Cell based Power Production and Supply Complying with the Active and Sleep Modes of Sensor MAC Protocols (솔라셀 작동 모드와 센서 MAC 프로토콜의 Active 및 Sleep 모드를 고려한 전력 생산 및 공급 제어)

  • Lee, Seung-Yong;Lee, Woong;Oh, Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6B
    • /
    • pp.423-432
    • /
    • 2012
  • We design a control circuit that can switch input power between a rechargeable battery and a sensor communication device (mote) depending on the operating state of a solar cell as well as the active and sleep mode of a sensor MAC protocol. A mote that simply combines a solarcell and a rechargeable battery may die if there is not sunlight long. A battery is recharged if sunlight is sufficient and a device is in a sleep mode, and it supplies power if sunlight is low and the mote is in an active mode. A mote can switch its input power between solar cell and battery depending on the output level of a solar cell. During this switching, a mote may lose its state information due to the reset of a microprocessor by the transient power-off. A capacitor is used to cope with this phenomenon and also supplies power to a mote during a sleep mode. Experimental results show that the solar cell based mote operates in a very stable manner against the lack of sunlight long.

Development of Solar Lighting Controller and Monitoring System (태양광 가로등 제어장치 및 모니터링 시스템 개발)

  • Kim, Tae-Yeop;Jung, Maeng-Hwa;Goh, Kwon-Sung;Yoo, Kwang-Taek
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.331-333
    • /
    • 2001
  • The flooded type battery is used for solar lighting system. Because the characteristic of flooded type battery is the short life time, the maintenance cost is high. So the using floe fed type battery in this system is inappropriate. The valve regulated lead acid batter(VRLA) is the maintenance free and cycle service purpose. This paper presents the development of control system and monitoring system to applied VRLA battery for maintenance free and long life time in system.

  • PDF

Latching Current Limiter for Satellite (위성 탑재용 래칭 전류 리미터)

  • Kim, Du-Il;Kim, Hee-Jun;Han, Sang-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1368-1370
    • /
    • 2005
  • Satellite is operated only with internal battery when separated from rocket. Internal battery is charged only from SAR(solar Array Regulator), solar cell. So battery will be exhausted and purpose of satellite will be failed if load module is out of order or short. This paper proposed real time current limiter which operated by telemetry of outer processor. This current limiter operates by control signal simultaneously cuts off over current by self over current sensing circuit. So it can reduce waste of battery energy and over load of outer processor.

  • PDF

Development of Small-capacity PCS for Personal Mobility Utilization (Personal Mobility 활용을 위한 소용량 PCS 개발)

  • Sun-Pil Kim;Kuk-Hyun Kim;Chang-Ho Lee;Le Tuan Vu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.27-34
    • /
    • 2023
  • This study conducted a study on a small-capacity PCS using lithium-ion batteries used in personal mobility. Most of the batteries in Personal Mobility only charge with external chargers and are used only as mobile energy sources. However, this paper aims to charge the battery of PM using PV and system power or to use the charged power as a stand-alone power supply. The developed PCS can be operated as a two-channel battery charger/discharger, a battery charger using solar power, and a stand-alone solar inverter depending on the operation method. The validity of the manufactured small-capacity PCS was verified through experiments.

High efficiency photovoltaic DC-DC charger possible to use the buck and boost combination mode (승압 강압 콤비네이션 모드가 가능한 고효율 태양광 충전용 DC-DC 컨버터)

  • Lee, Sang-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.97-104
    • /
    • 2017
  • In the present industrial field, the demand for the development of the solar power source device and the charging device for the solar cell is gradually increasing. The solar charger is largely divided into a DC-DC converter that converts the voltage generated from the sunlight to a charging voltage, and a battery and a charger that are charged with an actual battery. The conventional charger topology is used either as a Buck converter or a Boost converter alone, which has the disadvantage that the battery can not always be charged to the desired maximum power as input and output conditions change. Although studies using a topology capable of boosting and stepping have been carried out, Buck-Boost converters or Sepic converters with relatively low efficiency have been used. In this paper, we propose a new Buck Boost combination power converter topology structure that can use Buck converter and Boost converter at the same time to improve inductor current ripple and power converter efficiency caused by wide voltage control range like solar charger.

Development of the Switching Mode Conversion Type Pulse Charger for the Lead Battery of Solar Cell Generator Equipment by Fly-Back Converter Method (플라이백 컨버터방법에 의한 태양광발전설비의 납축전지 스위칭모드 전환형 펄스충전기 개발)

  • Shin, Choon-Shik;An, Young-Joo;Kim, Dong-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.1
    • /
    • pp.20-26
    • /
    • 2009
  • In this paper, the switching mode conversion type pulse charger by fly-back converter method for lead battery of the solar cell generator equipment is proposed. And we propose the control circuit and design method of insulated switching mode convert type pulse charger by fly-back convert method in the lead battery. The proposed system can minimize the current consumption by digital pulse. Also the proposed system can generate the constant 10[KHz] frequency, transmit the signal with main control system in the power control system. And it supervises the state of lead battery using one chip micro processor. The proposed the switching mode conversion type pulse charger by the fly-back converter method can charge fast and stabilize lead battery with nominal value 12[V], 20[AH]. Also we propose the design procedure of the power control circuit for turn ratio of fly-back inductor and determining method of values such as the charging current, bulk current, partial current, over current value and fixed charging voltage. The experiment results for the voltage and current wave for partial, bulk, over and fixed charging period show the good charging effect and performance. And the PCB and internal coupling diagram of the switching mode conversion type pulse charger by fly-back converter method is presented.

An Active Battery Charge Management Scheme with Predicting Power Generation in ESS (에너지저장시스템에서 발전량 예측을 통한 능동적 배터리 충전 관리 방안)

  • Kim, Jung-Jun;Chae, Beom-Seok;Lee, Young-Kwan;Cho, Ki-Hwan
    • Smart Media Journal
    • /
    • v.9 no.1
    • /
    • pp.84-91
    • /
    • 2020
  • Along with increasing the renewable energy utilization, many researches have paid attention on the utilization and efficiency of energy storage systems. Especially, it is required an operational model in order to actively respond with each system's failure of sub-systems in the solar energy storage system. This paper proposes an energy management scheme by estimating the newly generated power based on the solar power generation samples. With comparing the estimated battery charging power in real time and the total charging power of the battery rack, a charge model is applied to adjust the charging power, As a result, the stability of energy storage system would be improved by suppressing the battery heat while maintaining battery C-Rate.

COMS Electrical Power Subsystem Preliminary Design (통신해양기상위성 전력계 예비설계)

  • Gu, Ja-Chun;Kim, Ui-Chan
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.95-100
    • /
    • 2006
  • The COMS(Communication, Ocean and Meteorological Satellite) EPS(Electrical Power Subsystem) is derived from an enhanced Eurostar 3000 version. Eurostar 3000 EpS is fully autonomous operation in nominal conditions or in the event of a failure and provides a high level of reconfigure capability. This paper introduces the COMS EPS preliminary design result. COMS EPS consists of a battery, a solar arrat wing, a PSR(Power Supply Regulator), a PRU(Pyrotechnic Unit), a SDAM(Solar Array Drive Mechanism) and relay and fuse brackets. COMS EPS can offer a bus power capability of 3 kW. The solar array is made of a deployable wing with two panels. One type fo solar cells is selected ad GaAs/Ge triple junction cells. Li-ion battery is base lined with ten series cell module of five cells in parallel. PSR associated to battery and solar array wing generates a power bus fully regulated at 50 V. Power bus os centralized protection and distribution by relay and fuse brackets. PRU provides power for firing actuarors devices. The solar array wing is rotated by the SADM under control of the attitude orbit control subsystem. The control and monitoring of the EPS, especially of the battery, is performed by the PSR in combination with the on-board software.

  • PDF