• 제목/요약/키워드: Solar and Wind

검색결과 1,059건 처리시간 0.03초

Characteristics of Solar Wind Density Depletions During Solar Cycles 23 and 24

  • Park, Keunchan;Lee, Jeongwoo;Yi, Yu;Lee, Jaejin;Sohn, Jongdae
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권2호
    • /
    • pp.105-110
    • /
    • 2017
  • Solar wind density depletions are phenomena that solar wind density is rapidly decreased and keep the state. They are generally believed to be caused by the interplanetary (IP) shocks. However, there are other cases that are hardly associated with IP shocks. We set up a hypothesis for this phenomenon and analyze this study. We have collected the solar wind parameters such as density, speed and interplanetary magnetic field (IMF) data related to the solar wind density depletion events during the period from 1996 to 2013 that are obtained with the advanced composition explorer (ACE) and the Wind satellite. We also calculate two pressures (magnetic, dynamic) and analyze the relation with density depletion. As a result, we found total 53 events and the most these phenomena's sources caused by IP shock are interplanetary coronal mass ejection (ICME). We also found that solar wind density depletions are scarcely related with IP shock's parameters. The solar wind density is correlated with solar wind dynamic pressure within density depletion. However, the solar wind density has an little anti-correlation with IMF strength during all events of solar wind density depletion, regardless of the presence of IP shocks. Additionally, In 47 events of IP shocks, we find 6 events that show a feature of blast wave. The quantities of IP shocks are weaker than blast wave from the Sun, they are declined in a short time after increasing rapidly. We thus argue that IMF strength or dynamic pressure are an important factor in understanding the nature of solar wind density depletion. Since IMF strength and solar wind speed varies with solar cycle, we will also investigate the characteristics of solar wind density depletion events in different phases of solar cycle as an additional clue to their physical nature.

풍하중을 받는 태양광 추적 구조물의 응력해석 (Stress Analysis on a Structure of Solar Tracker Subjected to Wind Load)

  • 김용우;김원봉
    • 한국생산제조학회지
    • /
    • 제21권5호
    • /
    • pp.747-754
    • /
    • 2012
  • A solar power generator is usually installed outdoors and it is exposed to extreme environments such as snow weight and wind loading. The solar tracker structure should be designed to have sufficient stiffness and strength against such loads. In this paper, simulations are performed by varying the parameters such as wind directions, wind speeds and the pose of the solar panel to evaluate the effects of extreme wind on solar tracker. As the effects of wind load, maximum displacement and maximum equivalent stress in the solar tracker are calculated. Finite element stress analysis is carried out by using the pressure distribution that is obtained by prior wind load analysis due to the flow around the solar tracker. The stress analysis of solar tracker to check and/or improve structural robustness provides some useful instructions for structural design or revision of solar tracker.

기후변화 시나리오에 근거한 한반도 미래 풍력·태양-기상자원 변동성 (Variability of Future Wind and Solar Resource Over the Korean Peninsula Based on Climate Change Scenario)

  • 변재영;김유미;최병철
    • 신재생에너지
    • /
    • 제10권2호
    • /
    • pp.29-39
    • /
    • 2014
  • This study examines the future variability of surface wind speed and solar radiation based on climate change scenario over the Korean Peninsula. Climate change scenarios used in this study are RCP 4.5 and 8.5 with a 12.5 km horizontal resolution. Climate change scenario RCP 4.5 and 8.5 reproduce the general features of wind speed over the Korean Peninsula, such as strong wind speed during spring and winter and weak wind speed during summer. When compared with the values of wind speed and solar radiation of the future, they are expected to decrease current wind and solar resource map. Comparing the resource maps using RCP 4.5 and 8.5 scenarios, wind speed and solar radiation decrease with increasing greenhouse gas concentration. Meteorological resource maps of future wind and solar radiation should be improved with high resolution for the industrial application.

GROUND LEVEL ENHANCEMENTS IN RELATION WITH ENERGETIC SOLAR FEATURES AND DISTURBANCES IN SOLAR WIND PLASMA PARAMETERS

  • VERMA, PYARE LAL
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.47-51
    • /
    • 2015
  • Ground Level Enhancements (GLEs) in cosmic ray intensity observed during the period of 1997-2012 have been studied with energetic solar features and disturbances in solar wind plasma parameters and it is seen that all the GLEs have been found to be associated with coronal mass ejections, hard X-ray solar flares and solar radio bursts. All the GLEs have also been found to be associated with sudden jumps in solar proton flux of energy of ${\geq}60Mev$. A positive correlation with correlation coefficient of 0.48 has been found between the maximum percentage intensity (Imax%) of Ground Level Enhancements and the peak value of solar proton flux of energy (${\geq}60Mev$). All the Ground Level Enhancements have been found to be associated with jumps in solar wind plasma velocity (JSWV) events. A positive correlation with correlation coefficient of 0.43 has been found between the maximum percentage intensity (Imax %) of Ground Level Enhancements and the peak value of solar wind plasma velocity of associated (JSWV) events. All the Ground Level Enhancements have been found to be associated with jumps in solar wind plasma pressure (JSWP) events. A positive correlation with correlation coefficient of 0.67 has been found between the maximum percentage intensity (Imax %) of Ground Level Enhancements and the peak value of solar wind plasma pressure of associated (JSWP) events and of 0.68 between the maximum percentage intensity (Imax %) of Ground Level Enhancements and the magnitude of the jump in solar wind plasma pressure of associated (JSWP) events.

Solar Wind Observations Using STELab-IPS Array In Japan

  • Fujiki, Ken'ichi;Tokumaru, Munetoshi;Iju, Tomoya;Hirota, Maria;Noda, Momotaro;Kojima, Masayoshi
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.93.1-93.1
    • /
    • 2011
  • Radio wave from a compact radio source such as a quasar are scattered by irregularities of electron density. The scattered waves interfere with each other as they propagate to the Earth producing diffraction patterns on the ground. This phenomenon is called interplanetary scintillation (IPS). The IPS pattern contains the information of solar wind velocities and density fluctuations passing across a line-of-sight (LOS) from an observer to a radio source. The IPS is a useful tool which allows us to measure the solar wind in three dimensional space inaccessible to in situ observations. Although the IPS measurement is an integral of solar wind velocities and density fluctuations along the LOS, which causes degradation of accuracy, we have succeeded to develop computer assisted tomography (CAT) analysis to remove the effect of LOS integration. These techniques greatly improved the accuracy of determinations of solar wind velocity structures. In this talk we present our IPS observation system and long-term variation of global solar wind structures from 1980-2009, then we focus on recent peculiar solar wind properties.

  • PDF

Measurement of local wind and solar radiation for a hybrid power generation system design, Busan, Korea

  • Hwang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권7호
    • /
    • pp.799-806
    • /
    • 2013
  • As a first step to develop the hybrid power generation system, on this study, the time-variable resources of wind and solar radiation of Yeongdo, Busan, Korea had been measured during June and July 2013. And the quantity of generated wind power and solar photovoltaic had also been measured during the same period. It is found out that the wind mainly flew from southwest at the average speed of 2 m/s during 2 months. And it is clear that, because of the low wind velocity, the wind quality to generate the power seems not enough at this area. Meanwhile solar radiation was measured every daytime (6:00~19:00) and the peak solar radiation occurred around 12:00~14:00. And it is clear that the time-based variations of quantity of generated power were proportional to the variations of these resources, respectively. As a proposal, these 2 natural energies can be combined as resources of a hybrid system, because these 2 patterns are not overlapped so much on time base.

Wind loads on solar panels mounted parallel to pitched roofs, and acting on the underlying roof

  • Leitch, C.J.;Ginger, J.D.;Holmes, J.D.
    • Wind and Structures
    • /
    • 제22권3호
    • /
    • pp.307-328
    • /
    • 2016
  • This paper describes an investigation of the net wind loads on solar panels and wind loads on the underlying roof surface for panels mounted parallel to pitched roofs of domestic buildings. Typical solar panel array configurations were studied in a wind tunnel and the aerodynamic shape factors on the panels were put in a form appropriate for the Australian/New Zealand Wind Actions Standard AS/NZS 1170.2:2011. The results can also be used to obtain more refined design data on individual panels within an array. They also suggest values for the aerodynamic shape factors on the roof surface under the panels, based on a gust wind speed at roof height, of ${\pm}0.5$ for wind blowing parallel to the ridge, and ${\pm}0.6$ for wind blowing perpendicular to the ridge. The net loads on solar arrays in the middle portion of the roof are larger than those on the same portion of the roof without any solar panels, thus resulting in increased loads on the underlying roof structure.

Characteristic So1ar Wind Dynamics Associated With Geosynchronous Relativistic Electron Events

  • Ki, Hui-Jeong
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권1호
    • /
    • pp.41-41
    • /
    • 2004
  • We report the results on the investigation of the association of solar wind dynamics and the occurrence of geosynchronous relativistic electron events. This study analyzed E>2MeV electron fluxes measured by GOES 10 satellite and solar wind parameters by ACE satellite for April, 1999 to December, 2002. Most of the relativistic events during the time period are found to be accompanied by the prolonged period of quiet solar wind dynamics which is characterized as low solar wind pressure, weak interplanetary magnetic field, and fast fluctuations in IMF Bz. (omitted)

  • PDF

Effect of structure configurations and wind characteristics on the design of solar concentrator support structure under dynamic wind action

  • Kaabia, Bassem;Langlois, Sebastien;Maheux, Sebastien
    • Wind and Structures
    • /
    • 제27권1호
    • /
    • pp.41-57
    • /
    • 2018
  • Concentrated Solar Photovoltaic (CPV) is a promising alternative to conventional solar structures. These solar tracking structures need to be optimized to be competitive against other types of energy production. In particular, the selection of the structural parameters needs to be optimized with regards to the dynamic wind response. This study aims to evaluate the effect of the main structural parameters, as selected in the preliminary design phase, on the wind response and then on the weight of the steel support structure. A parametric study has been performed where parameters influencing dynamic wind response are varied. The study is performed using a semi-deterministic time-domain wind analysis method. Unsteady aerodynamic model is applied for the shape of the CPV structure collector at different configurations in conjunction with a consistent mass-spring-damper model with the corresponding degrees of freedom to describe the dynamic response of the system. It is shown that, unlike the static response analysis, the variation of the peak wind response with many structural parameters is highly nonlinear because of the dynamic wind action. A steel structural optimization process reveals that close attention to structural and site wind parameters could lead to optimal design of CPV steel support structure.

NUMERICAL CALCULATION OF TWO FLUID SOLAR WIND MODEL

  • KIM S.-J.;KIM K.-S.;MOON Y.-J.;CRO K.-S.;PARK Y. D.
    • 천문학회지
    • /
    • 제37권1호
    • /
    • pp.55-59
    • /
    • 2004
  • We have developed a two fluid solar wind model from the Sun to 1 AU. Its basic equations are mass, momentum and energy conservations. In these equations, we include a wave mechanism of heating the corona and accelerating the wind. The two fluid model takes into account the power spectrum of Alfvenic wave fluctuation. Model computations have been made to fit observational constraints such as electron($T_e$) and proton($T_p$) temperatures and solar wind speed(V) at 1 AU. As a result, we obtained physical quantities of solar wind as follows: $T_e$ is $7.4{\times}10^5$ K and density(n) is $1.7 {\times}10^7\;cm^{-3}$ in the corona. At 1 AU $T_e$ is $2.1 {\times} 10^5$ K and n is $0.3 cm^{-3}$, and V is $511 km\;s^{-1}$. Our model well explains the heating of protons in the corona and the acceleration of the solar wind.