• 제목/요약/키워드: Solar Shading

검색결과 227건 처리시간 0.027초

여름철 수시차광에 의한 온실 환경변화가 오이의 광호흡, 엽온, Thermal breakdown 등 생육에 미치는 영향 (The Effect of Greenhouse Climate Change by Temporary Shading at Summer on Photo Respiration, Leaf Temperature and Growth of Cucumber)

  • 김동억;권진경;홍순중;이종원;우영회
    • 생물환경조절학회지
    • /
    • 제29권3호
    • /
    • pp.306-312
    • /
    • 2020
  • 본 연구에서는 여름철 고온기 시설재배시 수시차광이 내부환경과 오이 생리적 반응에 미치는 영향을 검토하였다. 온실차광이 오이의 고온 스트레스 완화 정도를 추정하기 위하여 잎 온도, 엽기온차, 최대 카르복실화속도, 최대 전자전달 속도, 열파괴, 광호흡과 같은 오이의 생리적 반응을 측정 분석하였다. 오이 시설하우스의 차광율은 90% 수시차광, 40% 수시차광, 무차광 3수준의 실험 조건으로 하였다. 90% 수시차광은 외부 일사량이 650 W·m-2일 때 차광되도록 하였다. 기온, 일사량, 엽온, 엽기온차, 광호흡은 90%의 수시차광에서 40% 수시차광과 무차광 처리 보다 낮은 값을 나타내었다. 최대 카르복실화속도, 광호흡율은 90% 수시차광 온실이 다른 처리구보다 유의하게 낮은 것으로 나타났다. 고온저항성을 나타내는 thermal breakdown 값은 90%의 수시차광에서 다른 처리구 보다 유의하게 높은 것으로 나타났다. 따라서, 90% 수시차광이 여름철 오이 재배에 있어 고온스트레스를 덜받는 생육환경을 조성하였다는 결과를 얻었다.

Characteristics variation of PV module by damaged bypass diodes

  • 신우균;정태희;고석환;강기환;장효식
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.424.2-424.2
    • /
    • 2016
  • Solar cell converts light energy to electric energy. But a solar cell generates low power, PV module is fabricated by connected in series with dozens of solar cell. Owing to solar cell connected in series, power of PV module is influenced by shading or mismatch power of solar cells. To prevent power loss of PV module by shading or mismatch current, Bypass diodes are installed in PV module. Bypass diode operating reverse voltage by shading or mismatch power of solar cells bypass mismatch current. However, bypass diode in module exposed outdoor is easily damaged by surge voltage. In this paper, we confirm characteristics variation of PV module with damaged bypass diode. As a result, power of PV module with damaged bypass diode is reduced and Temperature of that is increased.

  • PDF

태양광 어레이의 출력 특성을 이용한 개선된 전역 최대전력 점 추종 기법 (Improved Global Maximum Power Point Tracking Technique Using Output Characteristics of Solar Array)

  • 유규현;이우철
    • 전력전자학회논문지
    • /
    • 제25권2호
    • /
    • pp.111-117
    • /
    • 2020
  • The photovoltaic module has the characteristic that the output power varies according to the amount of insolation. If partial shading occurs in an environment composed of an array, a number of local maximum power points (LMPPs) may be generated according to the shading state. Photovoltaic arrays require global maximum power point tracking due to variations in output characteristics caused by solar radiation and temperature. Conventional algorithms, such as P&O and Incond, do not follow the global maximum power point in a partial shaded solar array. In this study, we propose a technique to follow the global maximum power point by using the correlation of voltage, current, and power in solar arrays. The proposed control technique 2qw validated through simulation and experiments by constructing a 2-kW solar system.

PV모듈에서 그림자에 의한 전기적 특성 (The Electrical Characteristics of Shading Effect in Photovoltaic Module)

  • 김승태;강기환;박지홍;안형근;유권종;한득영
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.257-262
    • /
    • 2008
  • In this paper, we study the electric characteristics of shading effects in photovoltaic module in case of outdoor operation. When fabricating PV module, solar cells are connected serially to obtain the high voltage because of its low open circuit voltage. And total current is determined by lowest current among solar cells. When the shading happens on PV module's surface, the current of shaded solar cell determine the total current flow. Because of this, generally by-pass diode is installed on junction box. The bypass diode operate when revered and shaded solar cell's voltage is over 0.6 voltage. The reverse-biased solar cell gives reduced maximum power of PV module and might give negative effect on durability. So, adequate by-pass installation and selection is needed.

  • PDF

Adaptive Partial Shading Determinant Algorithm for Solar Array Systems

  • Wellawatta, Thusitha Randima;Choi, Sung-Jin
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1566-1574
    • /
    • 2019
  • Maximum power point tracking (MPPT) under the partial shading condition is a challenging research topic for photovoltaic systems. Shaded photo-voltaic module result in complex peak patterns on the power versus voltage curve which can misguide classical MPPT algorithms. Thus, various kinds of global MPPT algorithms have been studied. These have typically consisted of partial shading detection, global peak search and MPPT. The conventional partial shading detection algorithm aims to detect all of the occurrences of partial shading. This results in excessive execution of global peak searches and discontinuous operation of the MPPT. This in turn, reduces the achievable power for the PV module. Based on a theoretical investigation of power verse voltage curve patterns under various partial shading conditions, it is realized that not all the occurrences of partial shadings require a global peak search. Thus, an intelligent partial shading detection algorithm that provides exact identification of global peak search necessity is essential for the efficient utilization of solar energy resources. This paper presents a new partial shading determinant algorithm utilizing adaptive threshold levels. Conventional methods tend to be too sensitive to sharp shading patterns but insensitive to smooth patterns. However, the proposed algorithm always shows superb performance, regardless of the partial shading patterns.

음영효과를 고려한 a-Si PV모듈의 출력 변화 및 최적 설계조건에 관한 연구 (Analysis of Power Variation and Design Optimization of a-Si PV Modules Considering Shading Effect)

  • 신준오;정태희;김태범;강기환;안형근;한득영
    • 한국태양에너지학회 논문집
    • /
    • 제30권6호
    • /
    • pp.102-107
    • /
    • 2010
  • a-Si solar cell has relatively dominant drift current when compared with crystalline solar cell due to the high internal electric field. Such drift current make an impact on the PV module in the local shading. In this paper, the a-Si PV module output characteristics of shading effects was approached in terms of process condition, because of the different deposition layer of thin film lead to rising the resistance. We suggested design condition to ensure the long-term durability of the module with regard to the degradation factors such as hot spot by analyzing the module specification. The result shows a remarkable difference on module uniformity for each shading position. In addition, the unbalanced power loss due to power mismatch of each module could intensify the degradation.

수목형상에 따른 태양전지 모듈의 배열 연구 (Study on the tree-mimic array of solar cell modules)

  • 김기현;윤린
    • 한국태양에너지학회 논문집
    • /
    • 제31권6호
    • /
    • pp.32-39
    • /
    • 2011
  • This study is about the installation of the solar cell modules. The solar cell modules are built by the tree-mimic structure, and the performance is compared with that of the flat-plate type solar cell module installation. The mathematical tree model, which was suggested by Fisher and Honda, is utilized to determine the location of the solar cell modules for the tree-mimic type. The experiment shows that the generated electric power of the flat-plate type is higher than that of the tree-mimic type by 30% for one month of July. This lower performance for the tree-mimic type comes from the shading effects among the solar cell modules. The theoretical calculation for the absorbed solar radiation on the two types of solar cell installation shows that the tree-mimic type is higher than the flat-plate type by 8.5%. The shading area for the tree-mimic model is calculated with time by using the 3D-CAD, which will be utilized for the optimization of the tree-mimic model in the future.

내측 블라인드의 하절기 일사열 차폐 성능 비교 (Comparing Solar Heat Shading Performances of Internal Blinds in the Summer)

  • 박은미;최동호;박민용;이경희
    • 한국태양에너지학회 논문집
    • /
    • 제34권6호
    • /
    • pp.75-83
    • /
    • 2014
  • Heat loss through windows and doors occupies 20 to 45% of the total heat loss in building. It accounts for a large proportion of the total heat loss in building. In order to suppress the amount of heat flow through the windows and doors were considered actions such as reinforcement of insulation performance of window, adoption of low-e glass, and installation of solar heat shading device. The Purpose of this study is to compare solar heat shading performances of 3 types of internal blinds in the summer. In order to verify the solar heat shading performances of the blinds, a roll blind, blind A(Venetian blind) and blind B(Daylight guiding venetian blind)were installed in the four rooms with the same environmental conditions. As a result of the experiment, the blind B, blind A, roll blind showed an excellent performance in that order. Its because the blind B is made of aluminum materials coated with special paints on surface. It doesn't converted to long wave by short wave light. and it is reflected to short wave to outside.

창의 기울기에 따른 건축물 에너지 소비량 예측 (The Prediction of Energy Consumption by Window Inclination)

  • 조성우
    • 한국태양에너지학회 논문집
    • /
    • 제31권5호
    • /
    • pp.27-32
    • /
    • 2011
  • Most of domestic building generally don't have fixed shading devices considering of appearance and aesthetic issues. In this study is suggested that tilt window simultaneously has a role of shading and blocking solar radiation. The tilt window thermal performance is investigated by relation ship between inclination and heating cooling road. As comparing vertical window with $5^{\circ}$ and $7^{\circ}$ of tilt window respectively, the heating load is increased by 3.6% and cooling load is reduced by 8.1% on $5^{\circ}$ tilt window and the heating load is increased by 5.3% and cooling load is reduced by 11.5% on $5^{\circ}$ tilt window. Especially, the total load of alternative tilt window is showed the reduction rate 2.6% and3.6% compared of vertical window. Therefore, the tilt window is possible to role of shading of solar radiation and reduction of heating and cooling load.

사무소건물의 가동식 수평차양에 대한 연구 (A Study on Design of Movable Horizontal Shading Device for Office Building)

  • 김미현;서승직
    • 한국태양에너지학회 논문집
    • /
    • 제28권2호
    • /
    • pp.50-57
    • /
    • 2008
  • This study intends to evaluate the effect on indoor environment(annual thermal load, sunshine)by the application of the movable horizontal shading device on summer and winter season. For these purpose, we supposed the models which are composed of the several horizontal shading devices. Then we analyzed the simulation using the IES5.5.1 and Seoul weather data. The results of this study are as follows: 1) The proper length, angle of horizontal shading device is 2.1m, 28 degree, respectively. 2) The decreasing rate of the annual load of the Movable Horizontal Shading Model(MHSM) in comparison with the No Shading Model(NSM) & Conventional Horizontal Shading Model(CHSM) is 31.11%, 6.63% respectively. 3) The decrease of sunshine of the MHSM on summer season is effective the alleviation of visual displeasure. On the other hand, the increase of sunshine of the MHSM on winter season is effective the psychological comfort. Further study is to be required the sensitivity analysis on the various shading length for the realistic proper shading length.