• 제목/요약/키워드: Solar Power Generation Forecast

검색결과 27건 처리시간 0.024초

태양광발전 단기예측모델 개발 (The Development of the Short-Term Predict Model for Solar Power Generation)

  • 김광득
    • 한국태양에너지학회 논문집
    • /
    • 제33권6호
    • /
    • pp.62-69
    • /
    • 2013
  • In this paper, Korea Institute of Energy Research, building integrated renewable energy monitoring system that utilizes solar power generation forecast data forecast model is proposed. Renewable energy integration of real-time monitoring system based on monitoring data were building a database and the database of the weather conditions and to study the correlation structure was tailoring. The weather forecast cloud cover data, generation data, and solar radiation data, a data mining and time series analysis using the method developed models to forecast solar power. The development of solar power in order to forecast model of weather forecast data it is important to secure. To this end, in three hours, including a three-day forecast today Meteorological data were used from the KMA(korea Meteorological Administration) site offers. In order to verify the accuracy of the predicted solar circle for each prediction and the actual environment can be applied to generation and were analyzed.

전처리 방법과 인공지능 모델 차이에 따른 대전과 부산의 태양광 발전량 예측성능 비교: 기상관측자료와 예보자료를 이용하여 (Comparison of Solar Power Generation Forecasting Performance in Daejeon and Busan Based on Preprocessing Methods and Artificial Intelligence Techniques: Using Meteorological Observation and Forecast Data)

  • 심채연;백경민;박현수;박종연
    • 대기
    • /
    • 제34권2호
    • /
    • pp.177-185
    • /
    • 2024
  • As increasing global interest in renewable energy due to the ongoing climate crisis, there is a growing need for efficient technologies to manage such resources. This study focuses on the predictive skill of daily solar power generation using weather observation and forecast data. Meteorological data from the Korea Meteorological Administration and solar power generation data from the Korea Power Exchange were utilized for the period from January 2017 to May 2023, considering both inland (Daejeon) and coastal (Busan) regions. Temperature, wind speed, relative humidity, and precipitation were selected as relevant meteorological variables for solar power prediction. All data was preprocessed by removing their systematic components to use only their residuals and the residual of solar data were further processed with weighted adjustments for homoscedasticity. Four models, MLR (Multiple Linear Regression), RF (Random Forest), DNN (Deep Neural Network), and RNN (Recurrent Neural Network), were employed for solar power prediction and their performances were evaluated based on predicted values utilizing observed meteorological data (used as a reference), 1-day-ahead forecast data (referred to as fore1), and 2-day-ahead forecast data (fore2). DNN-based prediction model exhibits superior performance in both regions, with RNN performing the least effectively. However, MLR and RF demonstrate competitive performance comparable to DNN. The disparities in the performance of the four different models are less pronounced than anticipated, underscoring the pivotal role of fitting models using residuals. This emphasizes that the utilized preprocessing approach, specifically leveraging residuals, is poised to play a crucial role in the future of solar power generation forecasting.

SARIMA 모형을 이용한 태양광 발전량 예보 모형 구축 (Solar Power Generation Forecast Model Using Seasonal ARIMA)

  • 이동현;정아현;김진영;김창기;김현구;이영섭
    • 한국태양에너지학회 논문집
    • /
    • 제39권3호
    • /
    • pp.59-66
    • /
    • 2019
  • New and renewable energy forecasts are key technology to reduce the annual operating cost of new and renewable facilities, and accuracy of forecasts is paramount. In this study, we intend to build a model for the prediction of short-term solar power generation for 1 hour to 3 hours. To this end, this study applied two time series technique, ARIMA model without considering seasonality and SARIMA model with considering seasonality, comparing which technique has better predictive accuracy. Comparing predicted errors by MAE measures of solar power generation for 1 hour to 3 hours at four locations, the solar power forecast model using ARIMA was better in terms of predictive accuracy than the solar power forecast model using SARIMA. On the other hand, a comparison of predicted error by RMSE measures resulted in a solar power forecast model using SARIMA being better in terms of predictive accuracy than a solar power forecast model using ARIMA.

RNN-LSTM을 이용한 태양광 발전량 단기 예측 모델 (Short Term Forecast Model for Solar Power Generation using RNN-LSTM)

  • 신동하;김창복
    • 한국항행학회논문지
    • /
    • 제22권3호
    • /
    • pp.233-239
    • /
    • 2018
  • 태양광 발전은 기상 상태에 따라 간헐적이기 때문에 태양광 발전의 효율과 경제성 향상을 위해 정확한 발전량 예측이 요구된다. 본 연구는 목포 기상대에서 예보하는 기상 데이터와 영암 태양광 발전소의 발전량 데이터를 이용하여 태양광 발전량 단기 딥러닝 예측모델을 제안하였다. 기상청은 기온, 강수량, 풍향, 풍속, 습도, 운량 등의 기상요소를 3일간 예보한다. 그러나 태양광 발전량 예측에 가장 중요한 기상요소인 일조 및 일사 일사량 예보하지 않는다. 제안 모델은 예보 기상요소를 이용하여, 일조 및 일사 일사량을 예측 하였다. 또한 발전량은 기상요소에 예측된 일조 및 일사 기상요소를 추가하여 예측하였다. 제안 모델의 발전량 예측 결과 DNN의 평균 RMSE와 MAE는 0.177과 0.095이며, RNN은 0.116과 0.067이다. 또한, LSTM은 가장 좋은 결과인 0.100과 0.054이다. 향후 본 연구는 다양한 입력요소의 결합으로 보다 향상된 예측결과를 도출할 수 있을 것으로 기대된다.

제한적인 환경에서 현재 기온 데이터에 기반한 태양광 발전 예측 모델 개발 (The Development of the Predict Model for Solar Power Generation based on Current Temperature Data in Restricted Circumstances)

  • 이현진
    • 디지털콘텐츠학회 논문지
    • /
    • 제17권3호
    • /
    • pp.157-164
    • /
    • 2016
  • 태양광 발전량은 날씨에 큰 영향을 받는다. 기상 예보를 사용할 수 있는 환경이라면, 기상 예보 정보를 사용하여 미래의 태양광 발전량을 단기예측 할 수 있다. 하지만, 섬이나 산과 같이 네트워크의 단절에 의해 기상예보 정보를 사용할 수 없는 제한된 환경에서는 기상예보를 사용한 태양광 발전량 예측 모델을 사용할 수 없다. 따라서 본 논문에서는 시스템 자체적으로 수집할 수 있는 정보만을 이용하여 태양광 발전량을 단기 예측할 수 있는 시스템을 제안하였다. 예측의 정확도를 높이기 위하여 이전 온도정보와 발전량 정보를 이용하여 단기 예측모델을 생성하였다. 실험을 통하여 실데이터에 제안한 예측 모델을 적용하여 유용한 결과를 보였다.

그림자 효과를 고려한 태양전지 모듈의 발전량 예측 연구 (Prediction Study of Solar Modules Considering the Shadow Effect)

  • 김민수;지상민;오수영;정재학
    • Current Photovoltaic Research
    • /
    • 제4권2호
    • /
    • pp.80-86
    • /
    • 2016
  • Since the last five years it has become a lot of solar power plants installed. However, by installing the large-scale solar power station it is not easy to predict the actual generation years. Because there are a variety of factors, such as changes daily solar radiation, temperature and humidity. If the power output can be measured accurately it predicts profits also we can measure efficiency for solar power plants precisely. Therefore, Prediction of power generation is forecast to be a useful research field. In this study, out discovering the factors that can improve the accuracy of the prediction of the photovoltaic power generation presents the means to apply them to the power generation amount prediction.

현재 기상 정보의 이동 평균을 사용한 태양광 발전량 예측 (Use of the Moving Average of the Current Weather Data for the Solar Power Generation Amount Prediction)

  • 이현진
    • 한국멀티미디어학회논문지
    • /
    • 제19권8호
    • /
    • pp.1530-1537
    • /
    • 2016
  • Recently, solar power generation shows the significant growth in the renewable energy field. Using the short-term prediction, it is possible to control the electric power demand and the power generation plan of the auxiliary device. However, a short-term prediction can be used when you know the weather forecast. If it is not possible to use the weather forecast information because of disconnection of network at the island and the mountains or for security reasons, the accuracy of prediction is not good. Therefore, in this paper, we proposed a system capable of short-term prediction of solar power generation amount by using only the weather information that has been collected by oneself. We used temperature, humidity and insolation as weather information. We have applied a moving average to each information because they had a characteristic of time series. It was composed of min, max and average of each information, differences of mutual information and gradient of it. An artificial neural network, SVM and RBF Network model was used for the prediction algorithm and they were combined by Ensemble method. The results of this suggest that using a moving average during pre-processing and ensemble prediction models will maximize prediction accuracy.

태양에너지 예보기술 동향분석 (Trend Review of Solar Energy Forecasting Technique)

  • 전재호;이정태;김현구;강용혁;윤창열;김창기;김보영;김진영;박유연;김태현;조하나
    • 한국태양에너지학회 논문집
    • /
    • 제39권4호
    • /
    • pp.41-54
    • /
    • 2019
  • The proportion of solar photovoltaic power generation has steadily increased in the power trade market. Solar energy forecast is highly important for the stable trade of volatile solar energy in the existing power trade market, and it is necessary to identify accurately any forecast error according to the forecast lead time. This paper analyzes the latest study trend in solar energy forecast overseas and presents a consistent comparative assessment by adopting a single statistical variable (nRMSE) for forecast errors according to lead time and forecast technology.

부하예측 및 태양광 발전예측을 통한 ESS 운영방안(Guide-line) 연구 (Through load prediction and solar power generation prediction ESS operation plan(Guide-line) study)

  • 이기현;곽경일;채우리;고진덕;이주연
    • 디지털융복합연구
    • /
    • 제18권12호
    • /
    • pp.267-278
    • /
    • 2020
  • 에너지 패러다임이 격변하는 시점에서 ESS는 전력부족 및 전력수요관리의 해소와 재생에너지의 증진에 필수적인 요건이다. 이에 본 논문에서는 부하 및 태양광 발전 예측량을 통하여 비용효과적인 ESS Peak-Shaving 운영방안을 제안한다. ESS 운영방안을 위해 통계적 척도인 RMS을 통해 부하 및 태양광 발전 예측하였으며 예측된 부하 및 태양광 발전량을 통해 한 시간 단위의 목표 부하 절감량 Guide-line을 설정하였다. 대상 수용가의 1년 실데이터를 활용한 부하 및 태양광 발전 예측 시뮬레이션으로 2019년 5월 6일 ~ 10일의 부하 및 태양광 발전량을 예측 하였으며 시간별 Guide-line을 설정하였다. 부하 예측 평균오차율은 7.12%였으며, 태양광 발전량 예측 평균오차율은 10.57%를 나타냈다. ESS 운영방안을 통한 시간별 Guide-line 제시를 통해 수용가의 Peak-shaving 최대화에 기여하였음을 확인하였다. 본 논문의 결과를 통해 태양광과 연계하여 화석에너지로 발생하는 환경적인 영향을 최소화하며 신재생에너지를 최대 활용하여 에너지 문제를 줄일 수 있다고 기대한다.

태양광 발전을 위한 발전량 예측 모델 분석 (Analysis of prediction model for solar power generation)

  • 송재주;정윤수;이상호
    • 디지털융복합연구
    • /
    • 제12권3호
    • /
    • pp.243-248
    • /
    • 2014
  • 최근 태양광에너지는 실시간 태양의 위치를 추적하여 모듈경사각과 이루는 갓을 산정하여 일사량을 보정하는 부분에서 컴퓨팅과의 결합이 확대되고 있다. 태양광 발전은 태양의 위치에 따라 출력변동이 심하고 출력 예측이 어려워 효율적인 전력 생산을 위해서 신재생에너지를 전력계통에 안정적으로 연계할 수 있는 기술이 필요하다. 본 논문에서는 실증단지 내 발전단지의 실시간 기상자료 예측값을 이용하여 최종적으로 태양광 발전량 예측값을 산정하는 태양광 발전을 위한 발전량 예측 모델을 분석한다. 태양광 발전량은 태양광 발전기별 모듈특성, 온도 등을 감안하여 보정계수를 입력하고 예측 지역의 위치 경사각을 분석하여 발전량 예측 계산 알고리즘을 통해 최종 발전량을 예측한다. 또한, 제안 모델에서는 실시간 기상청 관측자료와 실시간 중기 예측 자료를 입력 자료로 사용하여 단기 예측 모델을 수행한다.