Acknowledgement
본 논문의 개선을 위해 좋은 의견을 제시해 주신 두 분의 심사위원께 감사를 드립니다. 이 연구는 한국연구재단(NRF)의 지원(RS-2023-00207866, 2020R1C1C1008631)으로 수행되었습니다.
References
- Chai, T., and R. R. Draxler, 2014: Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature. Geosci. Model Dev., 7, 1247-1250, doi:10.5194/gmd-7-1247-2014.
- IPCC, 2021: Climate Change 2021: The Physical Science Basis. Cambridge University Press, Intergovernmental Panel on Climate Change, 2391 pp.
- Kang, B.-B., and J.-H. Yun, 2023: A study on the prediction model of photovoltaic power generation using deep learning algorithm. J. Institute of Electron. Inf. Engineers, 60, 119-125, doi:10.5573/ieie.2023.60.2.119.
- Kang, K.-M., Y.-G. Choi, Y.-J. Kim, S.-J. Min, D.-S. Choi, K.-Y. Kim, and D.-Y. Lee, 2021: The classification of climate types and the delineation of their climatic characteristics using new normals (1991~ 2020) in the Republic of Korea. J. Climate Res., 16, 179-195, doi:10.14383/cri.2021.16.3.179.
- Ki, J.-H., S.-J. Baek, J.-Y. So, H.-G. Eom, and J.-H. Shin, 2023: Solar power generation prediction using machine learning and study of power generation using solar tracking panels. Trans. Korean Soc. Mech. Eng. B, 47, 55-62, doi:10.3795/ksme-b.2023.47.1.055.
- KEA, 2021: 2021 Renewable Energy Distribution Statistics, Korea Energy Agency, Accessed October 23, 2023, [Available online at https://www.knrec.or.kr/biz/pds/statistic/view.do?no=170].
- KIER, 2023: Analyzing 2022 Power Generation in South Korea through Electricity Statistics. Accessed December 20, 2023, Korea Institute of Energy Research Techpolicy Platform, [Available online at https://www.kier.re.kr/tpp/tppBoard/view/25?menuId=MENU00962].
- Kim, B.-C., S.-H. Jung, M.-S. Kim, J. G. Kim, H.-S. Lee, and S.-S. Kim, 2020: Solar power generation forecasting based on LSTM considering weather conditions. J. Korean Institute of Intelligent Syst., 30, 7-12, doi:10.5391/jkiis.2020.30.1.7.
- Kim, J.-W., 2019: A solar power prediction scheme based on machine learning algorithm from weather forecasts. J. Korean Institute of Inf. Technol., 17, 83-89, doi:10.14801/jkiit.2019.17.9.83.
- KPX, 2020: Amendment to the Electricity Market Operation Rules, Accessed November 21, 2023, Korea Power Exchange, [Available online at https://new.kpx.or.kr/board.es?mid=a10205010000&bid=0030&act=view&list_no=68951&tag=&nPage=1].
- Lee, D.-H., and G.-H. Kim, 2019: Deep learning based prediction method of long-term photovoltaic power generation using meteorological and seasonal information. J. Soc. e-Business Studies, 24, 1-16, doi:10.7838/jsebs.2019.24.1.001.
- Lee, K.-H., H.-G. Son, and S. Kim, 2018: A study on solar energy forecasting based on time series models. J. Appl. Stat., 31, 139-153, doi:10.5351/KJAS.2018.31.1.139.
- Mekhilef, S. , R. Saidur, and M. Kamalisarvestani, 2012:Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renewable and Sustainable Energy Rev., 16, 2920-2925, doi:10.1016/j.rser.2012.02.012.
- NOAA, 2020: Despite pandemic shutdowns, carbon dioxide and methane surged in 2020. Accessed July 10, 2023, National Oceanic and Atmospheric Administration, [Available online at https://research.noaa.gov/2021/04/07/despite-pandemic-shutdowns-carbon-dioxideand-methane-surged-in-2020/].
- Son, W.-B., 2023: Solar power generation forecasting technology status for anticipating the expansion of renewable energy deployment. J. Korean Institute of Communication Sciences, 40, 20-26.
- Voyant, C., G. Notton, J.-L. Duchaud, J. Almorox, and Z. M. Yaseen, 2020: Solar irradiation prediction intervals based on Box-Cox transformation and univariate representation of periodic autoregressive model. Renewable Energy Focus, 33, 43-53, doi:10.1016/j.ref.2020.04.001.
- Yu, J.-H., S.-J. Kim, B.-H. Jang, and S.-M. Woo, 2022: Renewable energy prediction market participation type photovoltaics prediction model development. J. Korean Solar Energy Soc., 42, 1-13, doi:10.7836/kses.2022.42.6.001.