Acknowledgement
이 연구는 기상청 「차세대 항공교통 지원 항공기상 기술개발(NARAE-Weather)」 (KMI2022-00310)의 지원으로 수행되었습니다. 또한, 이 연구는 2019년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업입니다(NRF-2019R1I1A2A01060035). 본 논문에 많은 지도와 아낌없는 조언을 주신 서울대학교 지구환경과학부 대기전공 백종진 교수님과 손석우 교수님께도 감사의 말씀을 드립니다.
References
- ARAIB, 2022: 2020 Aviation and railway accident casebook, Aviation and Railway Accident Investigation Board, 216 pp.
- Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Trapley, 2003: Implementation of Noah land surface model advances in the national centers for environmental prediction operational mesoscale Eta model. J. Geophys. Res. Atmos., 108, 8851, doi:10.1029/2002JD003296.
- FAA, 2012: Aeronautical information manual. Official guide to basic flight information and ATC procedures, Federal Aviation Administration, 729 pp.
- Grabowski, W. W., and T. L. Clark, 1991: Cloud-environment interface instability: Rising thermal calculations in two spatial dimensions. J. Atmos. Sci., 48, 527-546, doi:10.1175/1520-0469(1991)048<0527:CIIRTC>2.0.CO;2.
- Grabowski, W. W., and L.-P. Wang, 2013: Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech., 45, 293-324, doi:10.1146/annurev-fluid-011212-140750.
- Hamilton, D. W., and F. H. Proctor, 2003: An aircraft encounter with turbulence in the vicinity of a thunderstorm. 21st Applied Aerodynamics Conference, 23-26 June 2003, Orlando, Florida, AIAA, 2003-4075.
- Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129-151.
- Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.
- Janjic, Z. I., 2002: Nonsingular implementation of the Mellor-Yamada Level 2.5 scheme in the NCEP meso model. National Centers for Environmental Prediction Office Note 437, 61 pp.
- Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor. Climatol., 43, 170-181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
- Kaplan, M. L., A. W. Huffman, K. M. Lux, J. J. Charney, A. J. Riordan, and Y.-L. Lin, 2005: Characterizing the severe turbulence environments associated with commercial aviation accidents. Part 1: A 44-case study synoptic observational analyses. Meteor. Atmos. Phys., 88, 129-152, doi:10.1007/s00703-004-0080-0.
- KARI, 2022: A study on the expansion and practical development of solar UAV operation area in the stratosphere, Korea Aerospace Research Institute, 43 pp.
- Kim, J.-H., and H.-Y. Chun, 2010: A numerical study of Clear-Air Turbulence (CAT) encounters over South Korea on 2 April 2007. J. Appl. Meteor. Climatol.,49, 2381-2403, doi:10.1175/2010JAMC2449.1.
- Kim, J.-H., and H.-Y. Chun, 2011: Statistics and possible sources of aviation turbulence over South Korea. J. Appl. Meteor. Climatol., 50, 311-324, doi:10.1175/2010JAMC2492.1.
- Kim, J.-H., and H.-Y. Chun, 2012: A numerical simulation of convectively induced turbulence (CIT) above deep convection. J. Appl. Meteor. Climatol., 51, 1180-1200, doi:10.1175/JAMC-D-11-0140.1.
- Kim, J.-H., H.-Y. Chun, R. D. Sharman, and S. B. Trier, 2014: The role of vertical shear on aviation turbulence within cirrus bands of a simulated western pacific cyclone. Mon. Wea. Rev., 142, 2794-2813, doi:10.1175/MWR-D-14-00008.1.
- Kim, J.-H., J.-R. Park, S.-H. Kim, J. Kim, E. Lee, S. Baek, and G. Lee, 2021: A detection of convectively induced turbulence using in situ aircraft and radar spectral width data. Remote Sensing (RS), 13(4), 726. https://doi.org/10.3390/rs13040726.
- Kim, J., and J.-H. Kim, 2022: Retrieval and quality assessment of atmospheric wind from the aircraft-based observation near Incheon International Airport, Korea. Atmosphere, 32, 323-340, doi:10.14191/Atmos.2022. 32.4.323 (in Korean with English abstract).
- Kim, S.-H., H.-Y. Chun, D.-B. Lee, J.-H. Kim, and R. D. Sharman, 2021: Improving numerical weather prediction-based near-cloud aviation turbulence forecasts by diagnosing convective gravity wave breaking. Wea. Forecasting, 36, 1735-1757, doi:10.1175/WAF-D-20-0213.1.
- Kim, S.-H., J.-H. Kim, H.-Y. Chun, and R. D. Sharman, 2023: Global response of upper-level aviation turbulence from various sources to climate change. npj Clim. Atmos. Sci., 6, 92, doi:10.1038/s41612-023-00421-3.
- Lane, T. P., R. D. Sharman, T. L. Clark, and H.-M. Hsu, 2003: An investigation of turbulence generation mechanisms above deep convection. J. Atmos. Sci., 60, 1297-1321, doi:10.1175/1520-0469(2003)60<1297:AIOTGM>2.0.CO;2.
- Lane, T. P., and R. D. Sharman, 2008: Some influences of background flow conditions on the generation of turbulence due to gravity wave breaking above deep convection. J. Appl. Meteor. Climatol., 47, 2777-2796, doi:10.1175/2008JAMC1787.1.
- Lane, T. P., R. D. Sharman, S. B. Trier, R. G. Fovell, and J. K. Williams, 2012: Recent advances in the understanding of near-cloud turbulence. Bull. Amer. Meteor. Soc., 93, 499-515, doi:10.1175/BAMS-D-11-00062.1.
- Lee, J. H., J.-H. Kim, R. D. Sharman, J. Kim, and S.-W. Son, 2023: Climatology of clear-air turbulence in upper troposphere and lower stratosphere in the northern hemisphere using ERA5 reanalysis data. J. Geophys. Res. Atmos., 128, e2022JD037678, doi:10.1029/2022JD037679.
- Lee, T.-Y., and Y.-H. Kim, 2007: Heavy precipitation systems over the Korean Peninsula and their classification. Asia-Pacific J. Atmos. Sci., 43, 367-396.
- Lester, P. F., 1994: Turbulence: A new perspective for pilots. Jeppesen Sanderson, 290 pp.
- Meneguz, E., H. Wells, D. Turp, 2016: An automated system to quantify aircraft encounters with convectively induced turbulence over Europe and the Northeast Atlantic. J. Appl. Meteor. Climatol., 55, 1077-1089, doi:10.1175/JAMC-D-15-0194.1.
- Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102, 16663-16682, doi:10.1029/97JD00237.
- Munoz-Esparza, D., R. D. Sharman, and J. K. Lundquist, 2018: Turbulence dissipation rate in the atmospheric boundary layer: Observations and WRF mesoscale modeling during the XPIA field campaign. Mon. Wea. Rev., 146, 351-371, doi:10.1175/MWR-D-17-0186.1.
- Munoz-Esparza, D., H. H. Shin, T. L. Keller, K. Ikeda, R. D. Sharman, M. Steiner, J. Rawdon, and G. Pokodner, 2021: Revisiting the precipitous terrain classification from a meteorological perspective. J. Appl. Meteor. Climatol., 60, 1387-1406, doi:10.1175/JAMC-D-20-0268.1.
- Park, C., S.-W. Son, J. Kim, E.-C. Chang, J.-H. Kim, E. Jo, D.-H. Cha, and S. Jeong, 2021: Diverse synoptic weather patterns of warm-season heavy rainfall events in South Korea. Mon. Wea. Rev., 149, 3875-3893, doi:10.1175/MWR-D-20-0388.1.
- Reuter, G. W., and M. K. Yau, 1987: Mixing mechanisms in cumulus congestus clouds. Part I: Observations. J. Atmos. Sci., 44, 781-797, doi:10.1175/1520-0469 (1987)044<0781:MMICCC>2.0.CO;2.
- Sharman, R. D., L. B. Cornman, G. Meymaris, J. Pearson, and T. Farrar, 2014: Description and derived climatologies of automated in situ eddy-dissipation-rate reports of atmospheric turbulence. J. Appl. Meteor. Climatol., 53, 1416-1432, doi:10.1175/JAMC-D-13-0329.1.
- Sharman, R. D., and J. M. Pearson, 2017: Prediction of energy dissipation rates for aviation turbulence. Part I: Forecasting nonconvective turbulence. J. Appl. Meteor. Climatol., 56, 317-337, doi:10.1175/JAMC-D-16-0205.1.
- Sharman, R. D., and S. B. Trier, 2019: Influences of gravity waves on convectively-induced turbulence (CIT): A review. Pure Appl. Geophys., 176, 1923-1958, doi:10.1007/s00024-018-1849-2.
- Skamarock, W. C., and Coauthors, 2021: A Description of the Advanced Research WRF Model Version 4.3 (No. NCAR/TN-556+ STR), doi:10.5065/1dfh-6p97.
- Trier, S. B., and R. D. Sharman, 2009: Convection-permitting simulations of the environment supporting widespread turbulence within the upper-level outflow of a mesoscale convective system. Mon. Wea. Rev., 137, 1972-1990, doi:10.1175/2008MWR2770.1.
- Trier, S. B., R. D. Sharman, R. G. Fovell, and R. G. Frehlich, 2010: Numerical simulation of radial cloud bands within the upper-level outflow of an observed mesoscale convective system. J. Atmos. Sci., 67, 2990-2999, doi:10.1175/2010JAS3531.1.
- Trier, S. B., R. D. Sharman, D. Munoz-Esparza, and T. P. Lane, 2020: Environment and mechanisms of severe turbulence in a midlatitude cyclone. J. Atmos. Sci., 77, 3869-3889, doi:10.1175/JAS-D-20-0095.1.
- Williams, P. D., 2017: Increased light, moderate, and severe clear-air turbulence in response to climate change. Adv. Atmos. Sci., 34, 576-586, doi:10.1007/s00376-017-6268-2.
- WMO, 2003: Aircraft Meteorological Data Relay (AMDAR) reference manual, WMO-No. 958, World Meteorological Organization, 80 pp.
- WMO, 2012: Final report of the Fifth WMO Workshop on the Impact of Various Observing Systems on Numerical Weather Prediction. WMO Tech. Rep. 2012-1, World Meteorological Organization, 25 pp.