DOI QR코드

DOI QR Code

A Case Study on Near-Cloud Turbulence around the Mesoscale Convective System in the Korean Peninsula

한반도에서 발생한 중규모 대류계의 구름 주변 난류 발생 메커니즘 사례 연구

  • Sung-Il Yang (School of Earth and Environmental Sciences, Seoul National University) ;
  • Ju Heon Lee (School of Earth and Environmental Sciences, Seoul National University) ;
  • Jung-Hoon Kim (School of Earth and Environmental Sciences, Seoul National University)
  • 양성일 (서울대학교 지구환경과학부) ;
  • 이주헌 (서울대학교 지구환경과학부) ;
  • 김정훈 (서울대학교 지구환경과학부)
  • Received : 2024.03.04
  • Accepted : 2024.04.15
  • Published : 2024.05.31

Abstract

At 0843 UTC 30 May 2021, a commercial aircraft encountered severe turbulence at z = 11.5 km associated with the rapid development of Mesoscale Convective System (MCS) in the Gyeonggi Bay of Korea. To investigate the generation mechanisms of Near-Cloud Turbulence (NCT) near the MCS, Weather Research and Forecasting model was used to reproduce key features at multiple-scales with four nested domains (the finest ∆x = 0.2 km) and 112 hybrid vertical layers. Simulated subgrid-scale turbulent kinetic energy (SGS TKE) was located in three different regions of the MCS. First, the simulated NCT with non-zero SGS TKE at z = 11.5 km at 0835 UTC was collocated with the reported NCT. Cloud-induced flow deformation and entrainment process on the downstream of the overshooting top triggered convective instability and subsequent SGS TKE. Second, at z = 16.5 km at 0820 UTC, the localized SGS TKE was found 4 km above the overshooting cloud top. It was attributed to breaking down of vertically propagating convectively-induced gravity wave at background critical level. Lastly, SGS TKE was simulated at z = 11.5 km at 0930 UTC during the dissipating stage of MCS. Upper-level anticyclonic outflow of MCS intensified the environmental westerlies, developing strong vertical wind shear on the northeastern quadrant of the dissipating MCS. Three different generation mechanisms suggest the avoidance guidance for the possible NCT events near the entire period of the MCS in the heavy air traffic area around Incheon International Airport in Korea.

Keywords

Acknowledgement

이 연구는 기상청 「차세대 항공교통 지원 항공기상 기술개발(NARAE-Weather)」 (KMI2022-00310)의 지원으로 수행되었습니다. 또한, 이 연구는 2019년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업입니다(NRF-2019R1I1A2A01060035). 본 논문에 많은 지도와 아낌없는 조언을 주신 서울대학교 지구환경과학부 대기전공 백종진 교수님과 손석우 교수님께도 감사의 말씀을 드립니다.

References

  1. ARAIB, 2022: 2020 Aviation and railway accident casebook, Aviation and Railway Accident Investigation Board, 216 pp.
  2. Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Trapley, 2003: Implementation of Noah land surface model advances in the national centers for environmental prediction operational mesoscale Eta model. J. Geophys. Res. Atmos., 108, 8851, doi:10.1029/2002JD003296.
  3. FAA, 2012: Aeronautical information manual. Official guide to basic flight information and ATC procedures, Federal Aviation Administration, 729 pp.
  4. Grabowski, W. W., and T. L. Clark, 1991: Cloud-environment interface instability: Rising thermal calculations in two spatial dimensions. J. Atmos. Sci., 48, 527-546, doi:10.1175/1520-0469(1991)048<0527:CIIRTC>2.0.CO;2.
  5. Grabowski, W. W., and L.-P. Wang, 2013: Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech., 45, 293-324, doi:10.1146/annurev-fluid-011212-140750.
  6. Hamilton, D. W., and F. H. Proctor, 2003: An aircraft encounter with turbulence in the vicinity of a thunderstorm. 21st Applied Aerodynamics Conference, 23-26 June 2003, Orlando, Florida, AIAA, 2003-4075.
  7. Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129-151.
  8. Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.
  9. Janjic, Z. I., 2002: Nonsingular implementation of the Mellor-Yamada Level 2.5 scheme in the NCEP meso model. National Centers for Environmental Prediction Office Note 437, 61 pp.
  10. Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor. Climatol., 43, 170-181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
  11. Kaplan, M. L., A. W. Huffman, K. M. Lux, J. J. Charney, A. J. Riordan, and Y.-L. Lin, 2005: Characterizing the severe turbulence environments associated with commercial aviation accidents. Part 1: A 44-case study synoptic observational analyses. Meteor. Atmos. Phys., 88, 129-152, doi:10.1007/s00703-004-0080-0.
  12. KARI, 2022: A study on the expansion and practical development of solar UAV operation area in the stratosphere, Korea Aerospace Research Institute, 43 pp.
  13. Kim, J.-H., and H.-Y. Chun, 2010: A numerical study of Clear-Air Turbulence (CAT) encounters over South Korea on 2 April 2007. J. Appl. Meteor. Climatol.,49, 2381-2403, doi:10.1175/2010JAMC2449.1.
  14. Kim, J.-H., and H.-Y. Chun, 2011: Statistics and possible sources of aviation turbulence over South Korea. J. Appl. Meteor. Climatol., 50, 311-324, doi:10.1175/2010JAMC2492.1.
  15. Kim, J.-H., and H.-Y. Chun, 2012: A numerical simulation of convectively induced turbulence (CIT) above deep convection. J. Appl. Meteor. Climatol., 51, 1180-1200, doi:10.1175/JAMC-D-11-0140.1.
  16. Kim, J.-H., H.-Y. Chun, R. D. Sharman, and S. B. Trier, 2014: The role of vertical shear on aviation turbulence within cirrus bands of a simulated western pacific cyclone. Mon. Wea. Rev., 142, 2794-2813, doi:10.1175/MWR-D-14-00008.1.
  17. Kim, J.-H., J.-R. Park, S.-H. Kim, J. Kim, E. Lee, S. Baek, and G. Lee, 2021: A detection of convectively induced turbulence using in situ aircraft and radar spectral width data. Remote Sensing (RS), 13(4), 726. https://doi.org/10.3390/rs13040726.
  18. Kim, J., and J.-H. Kim, 2022: Retrieval and quality assessment of atmospheric wind from the aircraft-based observation near Incheon International Airport, Korea. Atmosphere, 32, 323-340, doi:10.14191/Atmos.2022. 32.4.323 (in Korean with English abstract).
  19. Kim, S.-H., H.-Y. Chun, D.-B. Lee, J.-H. Kim, and R. D. Sharman, 2021: Improving numerical weather prediction-based near-cloud aviation turbulence forecasts by diagnosing convective gravity wave breaking. Wea. Forecasting, 36, 1735-1757, doi:10.1175/WAF-D-20-0213.1.
  20. Kim, S.-H., J.-H. Kim, H.-Y. Chun, and R. D. Sharman, 2023: Global response of upper-level aviation turbulence from various sources to climate change. npj Clim. Atmos. Sci., 6, 92, doi:10.1038/s41612-023-00421-3.
  21. Lane, T. P., R. D. Sharman, T. L. Clark, and H.-M. Hsu, 2003: An investigation of turbulence generation mechanisms above deep convection. J. Atmos. Sci., 60, 1297-1321, doi:10.1175/1520-0469(2003)60<1297:AIOTGM>2.0.CO;2.
  22. Lane, T. P., and R. D. Sharman, 2008: Some influences of background flow conditions on the generation of turbulence due to gravity wave breaking above deep convection. J. Appl. Meteor. Climatol., 47, 2777-2796, doi:10.1175/2008JAMC1787.1.
  23. Lane, T. P., R. D. Sharman, S. B. Trier, R. G. Fovell, and J. K. Williams, 2012: Recent advances in the understanding of near-cloud turbulence. Bull. Amer. Meteor. Soc., 93, 499-515, doi:10.1175/BAMS-D-11-00062.1.
  24. Lee, J. H., J.-H. Kim, R. D. Sharman, J. Kim, and S.-W. Son, 2023: Climatology of clear-air turbulence in upper troposphere and lower stratosphere in the northern hemisphere using ERA5 reanalysis data. J. Geophys. Res. Atmos., 128, e2022JD037678, doi:10.1029/2022JD037679.
  25. Lee, T.-Y., and Y.-H. Kim, 2007: Heavy precipitation systems over the Korean Peninsula and their classification. Asia-Pacific J. Atmos. Sci., 43, 367-396.
  26. Lester, P. F., 1994: Turbulence: A new perspective for pilots. Jeppesen Sanderson, 290 pp.
  27. Meneguz, E., H. Wells, D. Turp, 2016: An automated system to quantify aircraft encounters with convectively induced turbulence over Europe and the Northeast Atlantic. J. Appl. Meteor. Climatol., 55, 1077-1089, doi:10.1175/JAMC-D-15-0194.1.
  28. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102, 16663-16682, doi:10.1029/97JD00237.
  29. Munoz-Esparza, D., R. D. Sharman, and J. K. Lundquist, 2018: Turbulence dissipation rate in the atmospheric boundary layer: Observations and WRF mesoscale modeling during the XPIA field campaign. Mon. Wea. Rev., 146, 351-371, doi:10.1175/MWR-D-17-0186.1.
  30. Munoz-Esparza, D., H. H. Shin, T. L. Keller, K. Ikeda, R. D. Sharman, M. Steiner, J. Rawdon, and G. Pokodner, 2021: Revisiting the precipitous terrain classification from a meteorological perspective. J. Appl. Meteor. Climatol., 60, 1387-1406, doi:10.1175/JAMC-D-20-0268.1.
  31. Park, C., S.-W. Son, J. Kim, E.-C. Chang, J.-H. Kim, E. Jo, D.-H. Cha, and S. Jeong, 2021: Diverse synoptic weather patterns of warm-season heavy rainfall events in South Korea. Mon. Wea. Rev., 149, 3875-3893, doi:10.1175/MWR-D-20-0388.1.
  32. Reuter, G. W., and M. K. Yau, 1987: Mixing mechanisms in cumulus congestus clouds. Part I: Observations. J. Atmos. Sci., 44, 781-797, doi:10.1175/1520-0469 (1987)044<0781:MMICCC>2.0.CO;2.
  33. Sharman, R. D., L. B. Cornman, G. Meymaris, J. Pearson, and T. Farrar, 2014: Description and derived climatologies of automated in situ eddy-dissipation-rate reports of atmospheric turbulence. J. Appl. Meteor. Climatol., 53, 1416-1432, doi:10.1175/JAMC-D-13-0329.1.
  34. Sharman, R. D., and J. M. Pearson, 2017: Prediction of energy dissipation rates for aviation turbulence. Part I: Forecasting nonconvective turbulence. J. Appl. Meteor. Climatol., 56, 317-337, doi:10.1175/JAMC-D-16-0205.1.
  35. Sharman, R. D., and S. B. Trier, 2019: Influences of gravity waves on convectively-induced turbulence (CIT): A review. Pure Appl. Geophys., 176, 1923-1958, doi:10.1007/s00024-018-1849-2.
  36. Skamarock, W. C., and Coauthors, 2021: A Description of the Advanced Research WRF Model Version 4.3 (No. NCAR/TN-556+ STR), doi:10.5065/1dfh-6p97.
  37. Trier, S. B., and R. D. Sharman, 2009: Convection-permitting simulations of the environment supporting widespread turbulence within the upper-level outflow of a mesoscale convective system. Mon. Wea. Rev., 137, 1972-1990, doi:10.1175/2008MWR2770.1.
  38. Trier, S. B., R. D. Sharman, R. G. Fovell, and R. G. Frehlich, 2010: Numerical simulation of radial cloud bands within the upper-level outflow of an observed mesoscale convective system. J. Atmos. Sci., 67, 2990-2999, doi:10.1175/2010JAS3531.1.
  39. Trier, S. B., R. D. Sharman, D. Munoz-Esparza, and T. P. Lane, 2020: Environment and mechanisms of severe turbulence in a midlatitude cyclone. J. Atmos. Sci., 77, 3869-3889, doi:10.1175/JAS-D-20-0095.1.
  40. Williams, P. D., 2017: Increased light, moderate, and severe clear-air turbulence in response to climate change. Adv. Atmos. Sci., 34, 576-586, doi:10.1007/s00376-017-6268-2.
  41. WMO, 2003: Aircraft Meteorological Data Relay (AMDAR) reference manual, WMO-No. 958, World Meteorological Organization, 80 pp.
  42. WMO, 2012: Final report of the Fifth WMO Workshop on the Impact of Various Observing Systems on Numerical Weather Prediction. WMO Tech. Rep. 2012-1, World Meteorological Organization, 25 pp.