• Title/Summary/Keyword: Solar Position

Search Result 276, Processing Time 0.033 seconds

Computation of Sun Position for the Sun Tracking Control System of Solar Concentrator (집광식 태양열 집열기의 태양추적장치를 위한 태양위치계산)

  • Park, Y.C.;Kang, Y.H.
    • Solar Energy
    • /
    • v.18 no.4
    • /
    • pp.87-94
    • /
    • 1998
  • This work presents a method to compute the sun position(azimuth and elevation), sunrise and sunset times. Accurate computation of sun position is very important to the precise tracking of the sun for the solar concentrator, which enables the maximum collection of solar energy. Methods to compute the sun position are available in the literature already. However most of them do not have accuracy verification, thus makes hard in selecting the most accurate sun position computation method. We first select the most accurate sun position computation method among the methods presented in the literature by comparing the computed sun position with Korean Almanac of Korea Astronomy Observatory. Then a procedure to compute the sunrise and sunset times is presented. Computed sun position shows $0.02^{\circ},\;0.6^{\circ}$ and one minute differences in azimuth, elevation and sunrise/sunset times respectively compared with Korean Almanac.

  • PDF

One-time measurement of irradiation intensity of Solar Simulator using cds photo-sensors (cds 광전소자(光電素子)를 이용한 인공태양(人工太陽) 일사강도(日射强度)의 동시측정(同時測定))

  • Bai, K.;Cho, S.H.;Lee, N.H.;Auh, P.C.M.
    • Solar Energy
    • /
    • v.5 no.2
    • /
    • pp.28-34
    • /
    • 1985
  • There are two kinds of irradiation intensity deviation, depending on time and position, on illuminated plane when thermal performance of solar collector is tested by using solar simulator. In this study we measured only position deviation of irradiation intensity using 45-cds photosensors and data acqusition system and found the point of average value. By this result we can improve the accuracy of irradiation measurement in indoor test of solar collector.

  • PDF

Efficiency Analysis Solar Cell of the Dynamic Boat's by SPA (SPA에 의한 동적인 보트의 태양전지 효율 분석)

  • Han, Jong-Ho;Lee, Jang-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1529-1536
    • /
    • 2011
  • Recently, worldwide government policy is pursuing saving energy and preservation. add to this, the solar cells are getting the spotlight nonpolluting energy source, using a variety of products for solar cell. in this paper, we'll make solar tracking system for suitable of dynamic boat. we knew that general boats are using fixed solar cell, it's first time to use tracking system of solar cells for boats so it is hard to application. To solve this problem in this paper we use to a magnetic compass and GPS for suitable solar tracking system of dynamic movement and to analyze fixed and tracking solar system. frist. solar tracking device is designed two-axis control system. one-axis control system is taken a magnetic compass for making efficiency defence solar tracking sensor, two-axis control system apply GPS latitude and longitude data for SPA(Solar position algorithm) so we know the azimuth and altitude. it analyze data value of accuracy comparison from result. so the proposed algorithm confirm to have validity.

Development of High Efficiency Solar Power Generation with Two-axis Tracking Control (양축 추적제어에 의한 고효율 태양열 발전시스템의 개발)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1721-1726
    • /
    • 2011
  • Recently, interest in renewable energy is increased due to exhaustion of fossil fuel and environmental pollution all over the world, therefore the solar power generation using solar energy is many researched. The solar power generation is required solar tracking control and high concentration solar thermal collector because generation performance is depended on concentrator efficiency. This paper proposes high efficiency solar power generation with two-axis tracking control using dish-type solar thermal collector that has excellent thermal collector performance and tracking algorithm that can be accurately tracked solar position. This paper proves validity through analysis with accuracy of tracking algorithm and generating efficiency.

Development of Tracking Solar Power Generation System using PSA Algorithm (PSA 알고리즘을 이용한 추적식 태양열 발전 시스템 개발)

  • Ko, Jae-Sub;Kang, Seong-Jun;Jang, Mi-Geum;Kim, Soon-Young;Mun, Ju-Hui;Lee, Jin-Kook;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1115-1116
    • /
    • 2011
  • This paper proposes tracking solar power generation system using position solar algorithm(PSA). The solar power generation is changed power according to solar position due to using solar energy. The solar tracking methods are the program method and sensor method. This paper proposes two-axis tracking solar power generation using program tracking method. The validity of proposed system in this paper is proved through analyzing temperature of solar collect, generating power and efficiency.

  • PDF

Comments on the Computation of Sun Position for Sun Tracking System (태양추적장치를 위한 태양위치계산에서의 제언)

  • Park, Young Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.6
    • /
    • pp.47-59
    • /
    • 2016
  • As the usage of sun tracking system in solar energy utilization facility increases, requirement of more accurate computation of sun position has also been increased. Accordingly, various algorithms to compute the sun position have been proposed in the literature and some of them insist that their algorithms guarantee less than 0.01 degree computational error. However, mostly, the true meaning of accuracy argued in their publication is not clearly explained. In addition to that, they do not clearly state under what condition the accuracy they proposed can be guaranteed. Such ambiguity may induce misunderstanding on the accuracy of the computed sun position and ultimately may make misguided notion on the actual sun tracking system's sun tracking accuracy. This work presents some comments related to the implementation of sun position computational algorithm for the sun tracking system. We first introduce the algorithms proposed in the literature. And then, from sun tracking system user's point of view, we explain the true meaning of accuracy of computed sun position. We also discuss how to select the proper algorithm for the actual implementation. We finally discuss how the input factors used in computation of sun position, like time, position etc, affect the computed sun position accuracy.

Efficiency Analysis of PV Tracking System with PSA Algorithm (PSA 알고리즘에 의한 태양광 추적시스템의 효율분석)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.36-44
    • /
    • 2009
  • This paper analyzes efficiency of photovoltaic(PV) tracking system using position solar algorithm(PSA). Solar location tracking system is needed for efficiently and intensively using PV system independent of environmental condition. PV tracking system of program method is presented a high tracking accuracy without the wrong operating in rapidly changing insolation by the clouds and atmospheric condition. Therefore, this paper analyzes efficiency of PV system using PSA algorithm for more correct position tracking of solar. Also, controlled altitude angle and azimuth angle by applied algorithm is compared with data of korea astronomy observatory. And this paper analyzes the tracking error and generation efficiency then proves the validity of applied algorithm.

Martian Bow Shock and Magnetic Pile-Up Barrier Formation Due to the Exosphere Ion Mass-Loading

  • Kim, Eo-Jin;Sohn, Jong-Dae;Yi, Yu;Ogino, Tatsuki;Lee, Joo-Hee;Park, Jae-Woo;Song, Young-Joo
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.1
    • /
    • pp.17-26
    • /
    • 2011
  • Bow shock, formed by the interaction between the solar wind and a planet, is generated in different patterns depending on the conditions of the planet. In the case of the earth, its own strong magnetic field plays a critical role in determining the position of the bow shock. However, in the case of Mars of which has very a small intrinsic magnetic field, the bow shock is formed by the direct interaction between the solar wind and the Martian ionosphere. It is known that the position of the Martian bow shock is affected by the mass loading-effect by which the supersonic solar wind velocity becomes subsonic as the heavy ions originating from the planet are loaded on the solar wind. We simulated the Martian magnetosphere depending on the changes of the density and velocity of the solar wind by using the three-dimensional magnetohydrodynamic model built by modifying the comet code that includes the mass loading effect. The Martian exosphere model of was employed as the Martian atmosphere model, and only the photoionization by the solar radiation was considered in the ionization process of the neutral atmosphere. In the simulation result under the normal solar wind conditions, the Martian bow shock position in the subsolar point direction was consistent with the result of the previous studies. The three-dimensional simulation results produced by varying the solar wind density and velocity were all included in the range of the Martian bow shock position observed by Mariner 4, Mars 2, 3, 5, and Phobos 2. Additionally, the simulation result also showed that the change of the solar wind density had a greater effect on the Martian bow shock position than the change of the solar wind velocity. Our result may be useful in analyzing the future observation data by Martian probes.

The Study on the Application of Accurate Solar Tracking Algorithm by using LabVIEW (태양정밀추적 알고리즘의 LabVIEW 적용 연구)

  • Oh, Seung-Jin;Kin, Young-Min;Lee, Yoon-Joon;Cho, Yil-Sik;Chun, Won-Gee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.121-125
    • /
    • 2009
  • There have been many developed systems for harnessing the solar energy such as solar water heaters, solar thermal power systems, PV systems, daylighting and solar hydrogen systems. all of them are capable of reducing $CO_2$ emission. However, the efficiency of those systems which work without a solar tracker is lower. This paper is a step by step procedure for fabrication and a performance test of a solar tracking system. The system developed in this study consists of motion controllers, motor drives, step-motors, feedback devices and application. CdS sensors are introduced into the solar tracking system for playing a primary role in poor conditions for tracking due to a gear backlash and a strong wind. Mini-dish was used as a concentrator for collecting sun light. The solar position data, in terms of azimuth and elevation, sunrise and sunset times was compared with those of KASI(Korea Astronomy & Space Science Institute). The results presented in this article provide the high accuracy of the present system in solar tracking and indicate a potential for energy savings.

  • PDF

A Development of the Solar Position Tracker on the Program Method for the Small Typed Stand-alone PV System Commercialization (소형 태양광 발전시스템 상용화를 위한 프로그램 방식의 태양위치추적기 개발)

  • 이양규;강신영;김광헌
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.260-265
    • /
    • 2003
  • The energy of PV system is different as the elevation and aximuth of the sun. This paper deals with the economical position tracking system development for the stand alone PV system. We have made more economical solar position tracking system which is used a tracking program than other similar systems. It is applied to the solar lighting lamp. We have made a comparative study of the energy amount between the fixed type and the tracking type during some period. The improved efficiency of the system is about 86 %.