• 제목/요약/키워드: Solar Home System

검색결과 57건 처리시간 0.025초

고집광 태양전지의 비균등 조사에 의한 출력특성 (Output Power Characteristics of CPV Solar Cell due to Non-uniform Illumination)

  • 신구환;유광선;차원호;명로훈;김용식;강기환
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.269-274
    • /
    • 2011
  • A solar cell is primary parts to produce electrical energy from the Sun. And, we can utilize those solar cells as a power generation system in home, factory, and so on. In order to make proper power, the solar cells are configured in series and parallel lay down. In condition of uniform illumination, the solar array will produce an enough power by photovoltaic effects from the solar cells. In case of non-uniform illumination on the solar cells, the power will be dramatically decreased compared to design. Fortunately, there were so many research outputs regarding the illumination effects on solar array. In this work, we tried to find out the non-uniform effects on unit CPV solar cell, because there were no research outputs for unit CPV solar cell considering illumination. The CPV solar cell was used in CPV system to make a power by the Sun. We chosen the triple junction solar cell of GaAsInP2Ge for simulation, which has a 30 % of conversion efficiency. By simulation, we obtained the output performance of CPV solar cells in condition of various illumination by using Hamming Window function. Its performance was degraded by 10 % to 50 % depending illumination conditions.

  • PDF

제로카본 그린홈의 여름철 운영조건에 따른 실내 열환경 평가 (An Evaluation of Indoor Thermal Environment for Zero-Carbon Green Home according to the Operation Conditions in Summer)

  • 유정연;조동우;김기한
    • 한국태양에너지학회 논문집
    • /
    • 제40권2호
    • /
    • pp.25-36
    • /
    • 2020
  • The Korean government has a plan to mandate zero-energy buildings in 2020 for public and 2025 for private buildings. In order to design a zero-energy building, insulation and airtightness, which are the most basic elements of passive house technology, are required, and the government has been accomplished this through step-by-step strengthening of related standards. In passive house with high thermal insulation and airtightness performance, the heat introduced into the building through solar radiation can be stored for a long time to keep the inside warm during winter. On the other hand, during summer, heat introduced into the building cannot be easily released to outside, so it is necessary to actively block solar radiation and high temperature outdoor air to prevent an increase of indoor temperature. Therefore, this study aims to derive an appropriate operation condition of passive house to maintain the indoor temperature at an suitable level according to the ventilation methods and solar shading conditions. As a result, under the conditions that the outdoor temperature was 28℃ or less, the ventilation using a heat recovery ventilation system at daytime and natural ventilation at nighttime were selected for the most appropriate operation method. In addition, in the case of solar shading, it was found that blocking solar radiation at daytime using the blind and open the blind at nighttime to ensure natural ventilation were selected for the most appropriate solar shading condition.

에너지 자립형 스마트 홈 시스템 개발 (Development of Self-Consumption Smart Home System)

  • 이상학
    • 한국위성정보통신학회논문지
    • /
    • 제11권2호
    • /
    • pp.42-47
    • /
    • 2016
  • 최근 태양광, 에너지 저장 시스템 등의 발전으로 인해 가정에서 에너지 관리 시스템을 구축하고 에너지 생산을 스스로 하고자 하는 에너지 자립형 스마트 홈 시스템에 대한 연구가 활발해 지고 있다. 특히, 일본의 경우 후쿠시마 원전 사태 이후 전력망의 불안정성으로 인해 태양광을 통해 발전하고 이를 전력 에너지 저장 시스템에 저장하고 사용하는 가정용 시스템이 상용화되었다. 북미나 유럽에서도 태양광과 에너지 저장 시스템을 결합하여 신재생에너지 보급사업을 통해 보조금을 지급하면서 설치 가정을 확대하고 있다. 본 논문에서는 댁내 홈 네트워크를 통해 태양광과 에너지 저장 시스템을 연결하고 실시간 요금제에 기반을 둔 에너지 자립형 스마트 홈 시스템 개발에 대해 기술한다. 사용자의 개입을 최소화하면서 자동화된 운전으로 전력망으로부터의 에너지 사용을 최적화하여 에너지 자립형 홈을 구현하였다.

J시 태양열 시범사업의 실태조사.분석에 관한 연구 (A Study on Actual Condition Analysis of Solar Thermal System Demonstrative Enterprise in the J City)

  • 유동철;이두호;이응직
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.80-85
    • /
    • 2011
  • As the instability of oil prices rose because of the situation in Libya, oil prices worldwide recorded the highest level due to the interference in supply. And so, in the 21st century, increasing efforts are being made to use clean new renewable energy centered on solar energy in accommodation of the cycle of nature instead of being reliant on the oil exporting nations. In order to reduce city energy internationally, the implementation of a low carbon city under the combined cooperation of industrial. construction, new renewable energy and transportation sectors with continuous development centered on low carbon green urban planning is now becoming established as the paradigm of the times. Recently, the government has begun carrying out the One Million Green Home Project, which is a project where the government with the goal of providing one million renewable energy homes by 2020 gives renewable energy subsidization for a partial amount of the standard unit price of installation when solar ray, solar heat, geothermal heat, small wind power or fuel cell energy is used. Thus, through this thesis which studies the state of and surveys the green village at Shingok-ri Songhak-myun Jaecheon-shi, it is the desire that the One Million Green Homes Project will be more efficiently developed and plans for improvement formed so that a high level of satisfaction in the product will be provided.

  • PDF

Si 태양전지 금속배선 공정을 위한 나노 Ag 잉크젯 프린터 제작 및 응용 (Manufacturing of Ag Nano-particle Ink-jet Printer and the Application into Metal Interconnection Process of Si Solar Cells)

  • 이정택;최재호;김기완;신명선;김근주
    • 반도체디스플레이기술학회지
    • /
    • 제10권2호
    • /
    • pp.73-81
    • /
    • 2011
  • We manufactured the inkjet printing system for the application into the nano Ag finger line interconnection process in Si solar cells. The home-made inkjet printer consists of motion part for XY motion stage with optical table, head part, power and control part in the rack box with pump, and ink supply part for the connection of pump-tube-sub ink tanknozzle. The ink jet printing system has been used to conduct the interconnection process of finger lines on Si solar cell. The nano ink includes the 50 nm-diameter. Ag nano particles and the viscosity is 14.4 cP at $22^{\circ}C$. After processing of inkjet printing on the finger lines of Si solar cell, the nano particles were measured by scanning electron microscope. After the heat treatment at $850^{\circ}C$, the finger lines showed the smooth surface morphology without micropores.

센서를 이용한 자동 실내 온도 제어시스템 설계 및 구현 (Design and Implementation of Automatic Control System in Room using Sensor)

  • 정규태;이은진;김흥수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.326-328
    • /
    • 2015
  • 건물에서 창문의 기능은 태양 복사열의 유입을 통해 실내의 환경을 조성하고 동절기에는 난방비의 절감을 유도할 수 있으나, 다른 구조체에 비해 단열 성능이 크게 떨어져 5배 이상의 에너지가 손실되어 에너지 취약 부위이다. 또한 하절기에는 태양 복사열 과다로 냉방비가 가중된다. 이에 본 논문에서는 일반 가정에서 온도, 습도, 조도, 일사량 등의 실내 환경 정보를 이용하여 창문 자동 제어시스템을 개발하고자 한다. 이 시스템은 다양한 센서를 이용하여 실내 환경 정보를 수집하고 수집된 정보를 이용하여 모터를 제어하여 창문을 제어 할 수 있는 시스템이다. 가정 내 에너지 절감을 위하여 창호와 블라인드에 환경 자동화 서비스를 제공하여 사용자의 만족도를 높이고 스마트폰을 이용하여 시스템 제어를 통해 생활 속에 편리함을 제공하고자 한다.

  • PDF

가정용 태양광/ESS 통합 스마트 PCS 개발 (Development of Smart PCS(Power Conditioning System) Integrating PV/ESS for Home)

  • 이상학
    • 디지털융복합연구
    • /
    • 제14권7호
    • /
    • pp.193-200
    • /
    • 2016
  • 최근 들어 가정 내 태양광과 에너지저장시스템을 도입하여 에너지 자립도를 높이고자 하는 기술 개발이 활발히 이루어지고 있다. 낮에 생산된 전기를 에너지 저장 시스템에 충전해 두고 전기요금이 높을 때 사용함으로써 효율적인 에너지 관리를 수행할 수 있다. 국내에서는 아직까지 가정용 실시간 요금제가 이루어지고 있지 않지만 누진제 상의 일정 목표까지 전기 사용량을 낮출 수 있다. 가정 내 태양광을 도입하기 위해서는 전력 변환장치인 PCS를 필요로 한다. PCS는 직류로 생산된 전력을 교류로 변환하여 사용하고 에너지 저장 시스템의 충방전을 수행하도록 한다. 에너지 자립형 스마트 홈 시스템은 태양광, 에너지저장시스템에 대한 일반인들의 관심이 높아지면서 해외를 중심으로 시장이 형성되는 단계이다. 본 논문의 결과물은 실환경에 설치되어 검증을 수행하였으며 실시간 요금제를 가정하여 에너지 절감 효과를 분석하였다.

실험을 통한 건물통합형 태양광·열(BIPVT) 시스템의 난방성능 평가 (The Heating Performance Evaluation of Heating System with Building-Integrated Photovoltaic/Thermal Collectors)

  • 정선옥;김진희;김지성;박세현;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제32권6호
    • /
    • pp.113-119
    • /
    • 2012
  • The heat from PV modules should be removed for better electrical performance, and can be converted into useful thermal energy. A photovoltaic-thermal(PVT) module is a combination of PV module with a solar thermal collector which forms one device that produce thermal energy as well as electricity. In many studies various water type PVT collectors have been proposed in effort to increase their electrical and thermal efficiency. The aim of this study is to evaluate the heating performance of heating system combined with PVT collectors that on integrated building roof. For this study, the BIPVT system of 1.5kWp was installed at the experimental house, and it was incorporated with its heating system. From the experimental results, the solar fraction of the heating system with BIPVT was 15%. It was also found that was analyzed that the heating energy for the house can be reduced by 47%, as the heat gained from BIPVT system pre-heated the water used for heating system.

An Improved Photovoltaic System Output Prediction Model under Limited Weather Information

  • Park, Sung-Won;Son, Sung-Yong;Kim, Changseob;LEE, Kwang Y.;Hwang, Hye-Mi
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.1874-1885
    • /
    • 2018
  • The customer side operation is getting more complex in a smart grid environment because of the adoption of renewable resources. In performing energy management planning or scheduling, it is essential to forecast non-controllable resources accurately and robustly. The PV system is one of the common renewable energy resources in customer side. Its output depends on weather and physical characteristics of the PV system. Thus, weather information is essential to predict the amount of PV system output. However, weather forecast usually does not include enough solar irradiation information. In this study, a PV system power output prediction model (PPM) under limited weather information is proposed. In the proposed model, meteorological radiation model (MRM) is used to improve cloud cover radiation model (CRM) to consider the seasonal effect of the target region. The results of the proposed model are compared to the result of the conventional CRM prediction method on the PV generation obtained from a field test site. With the PPM, root mean square error (RMSE), and mean absolute error (MAE) are improved by 23.43% and 33.76%, respectively, compared to CRM for all days; while in clear days, they are improved by 53.36% and 62.90%, respectively.

공동주택 발코니 PV 연계 가정용 BESS의 에너지 절감 효과 분석 (Analysis of Energy Saving Effect of the Residential BESS Connected to the Balcony-PV in Apartment Houses)

  • 김차년;엄지영;김용기
    • 한국태양에너지학회 논문집
    • /
    • 제40권3호
    • /
    • pp.21-31
    • /
    • 2020
  • The government mandates gradually zero energy building and Photovoltaic power generation systems installed in buildings are emerging as the most realistic alternative to increase the independence rate of building energy. In this study, we propose a method to reduce the power consumption of households by increasing the PV capacity of balconies and applying the method used the charged electric power stored in batteries after sunset. In order to evaluate the electric power energy savings of the residential BESS, a balcony PV 1.2 kW and a battery pack 2 kWh were installed for 9 houses in 4 apartments in Seoul and Gyeonggi-do. The BESS is charged when the balcony PV is generated electric power, and when solar power generation is finished, it supplies power to the electric appliances connected to the load. As a result of installing the solar PV module 1.2 kW and 2 kWh class BESS for 3 households located in Seoul and Gyeonggi-do, the average electric power consumption saving rate was 40%. The reduction in electricity consumption in the case of zero generation surplus power by maximizing the utilization rate of BESS has been improved to about 53%. Therefore, in order to increase the self-sufficiency rate of electric energy in apartment houses, it is effective to increase the solar photovoltaic capacity of the balcony and apply the residential BESS. In the future, it is believed that the balcony PV and home BESS will play a key role in achieving mandatory zero-energy housing.