• Title/Summary/Keyword: Solar Energy System

Search Result 2,604, Processing Time 0.028 seconds

Mathematical Simulation on Thermal Performance of Packed Bed Solar Energy Storage System (Packed Bed 태양에너지 저장시스템의 열성능에 관한 수학적 시뮬레이션)

  • KUMAR, ANIL;KIM, MAN-HOE
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.4
    • /
    • pp.331-338
    • /
    • 2015
  • Solar air heaters (SAHs) are simple in design and widely used for solar energy collection devices, and a packed bed is one of typical solar energy storage systems of thermal energy captured by SAHs. This paper presents mathematical modeling and simulation on the thermal performance of various packed bed energy storage systems. A MATLAB program is used to estimate the thermal efficiency of packed bed SAH. Among the various packed bed energy storage systems considered, the wire mesh screen packed bed SAH shows the best thermal efficiency over the entire range of design conditions. The maximum of thermal efficiency of packed bed SAH with wire mesh screen matrices has been found to be 0.794 for Re=2000 - 20000 and ${\Delta}T/I=0.002-0.02$.

Hydrogen and E-Fuel Production via Thermo-chemical Water Splitting Using Solar Energy (국제 공동 연구를 통한 태양에너지 활용 열화학 물분해 그린 수소 생산 연구 및 E-fuel 생산 연구 동향 보고)

  • Hyun-Seok Cho
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.110-115
    • /
    • 2024
  • Global sustainable energy needs and carbon neutrality goals make hydrogen a key future energy source. South Korea and Japan lead with proactive hydrogen policies, including South Korea's Hydrogen Law and Japan's strategy updates aiming for a hydrogen-centric society by 2050. A notable advance is the solar thermal chemical water-splitting cycle for green hydrogen production, spotlighted by Korea Institute of Energy Research (KIER) and Niigata University's joint initiative. This method uses solar energy to split water into hydrogen and oxygen, offering a carbon-neutral hydrogen production route. The study focuses on international collaboration in solar energy for thermochemical water-splitting and E-fuel production, highlighting breakthroughs in catalyst and reactor design to enhance solar thermal technology's commercial viability for sustainable fuel production. Collaborations, like ARENA in Australia, target global carbon emission reduction and energy system sustainability, contributing to a cleaner, sustainable energy future.

Power Management Circuit for Self-Powered Systems Using Vibration and Solar Energy (진동 및 빛 에너지를 이용한 자가발전 시스템용 전력관리 회로)

  • Seo, Wan-Suck;Kim, Min-Kyu;Yu, So-Hyeon;Yoon, Eun-Jung;Park, Jun-Ho;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.419-422
    • /
    • 2011
  • In this paper a dual-input self-powered power management system is proposed for low-power applications. The system is powered by merging the energy from a PZT vibration element and a solar cell. The proposed system consists of a charge pump for increasing the output voltage of a solar cell, a rectifier for DC conversion of the PZT output and a power management circuit for merging and managing the harvested energy. The performance of the design circuit has been verified through extensive simulation using a 0.18um CMOS technology. The chip area is $295um{\times}275um$.

  • PDF

A study on the efficiency of sloped type Double-skin System for the Curtailment of Heating/Cooling Load (냉난방부하 절감을 위한 경사형 이중외피시스템의 성능연구)

  • An, Hyung-Jun;Kim, Young-Tag;Choi, Chang-Ho;Lee, Hyn-Woo
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.4
    • /
    • pp.77-87
    • /
    • 2004
  • BIPV or double skin applied to the surface of the building, power and thermal load cannot both be increased. In the case of BIPV, because it is applied to the facade, incident solar energy decreases and efficiency drops off. The system in this paper complements these disadvantages and aims to decrease the heating & cooling load by transforming solar energy to electronic and thermal energy. The research in this paper is about the applicability of the clear PV attached double-skin system. And the PV electronic generation and the factors that affect the heating & cooling load such as the daily radiation, sun shading ratio, heating & cooling load, daylight luminance and glare distributions in the building are simulated.

The Performance and Efficiency Analysis of a PVT System Compared with a PV module and a Solar collector (PVT 시스템의 PV 모듈 및 태양열 집열기 대비 성능 및 효율 비교분석)

  • Euh, Seung-Hee;Lee, Jeong-Bin;Choi, Yun-Sung;Kim, Dae-Hyun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.60-67
    • /
    • 2011
  • A photovoltaic/thermal(PVT)solar system is the solar technology that allows for simultaneous conversion of solar energy into both electricity and heat. This paper compared the performance of PVT system with a conventional PV module and solar collector and analyzed electrical and thermal efficiency of PVT system in terms of solar irradiance and inlet temperature of the working fluid. Based on the experimental data, thermal and electrical efficiencies of the glazed PVT system were 57.9% and 14.27% under zero reduced temperature condition which were lower by 13.6% than the solar thermal absorber plate and by 0.08% than the PV module respectively. For the unglazed PVT system, it had lower thermal efficiency than the solar thermal absorber plate but higher electrical performance than the PV module due to the cooling effect by the working fluid. However, total efficiency of the glazed PVT system was 72.2% which was higher than combined efficiencies of the solar collector and PV module. Besides, total efficiency of the PVT system would be much higher if calculated based on unit area.

  • PDF

Designed and Performance Analysis of High Efficiency Concentrated Photovoltaic System using III-V Compound Semiconductor (III-V 화합물 반도체를 이용한 고효율 집광형 태양광 발전시스템 설계 및 성능분석)

  • Ko, Jae-Hong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.9
    • /
    • pp.33-39
    • /
    • 2012
  • For photovoltaic power generation need certainly decreasing module's price and increasing promote efficiency technology. Almost of solar panel is on the decrease energy efficiency since 2,000. like silicone(Si) solar panel, thin film solar panel and etc. Silicone(Si) solar panel was best efficiency in 1999. It's 24%. But after that time, It didn't pass limit of energy efficiency. That's why, nowadays being issued that using III-V compound semiconductor to high efficiency of concentrating photovoltaic system for making an alternative proposal. In Korea, making researches in allied technology with III-V compound semiconductor solar panel, condenser technology, and solar tracker. but feasibility study for concentrating photovoltaic power generation hasn't progressed yet. This thesis made a plan about CPV(Concentrating Photovoltaic)system and CPV has a higher energy efficiency than PV(Photovoltaic)system in fine climate conditions from comparing CPV with using silicone(Si) solar panel to PV's efficiency test result.

A Detail Survey of Horizontal Global Radiation and Cloud Cover for the Installation of Solar Photovoltaic System in Korea (국내 태양광시스템 설치를 위한 수평면 전일사량과 운량 정밀조사)

  • Jo, Dok-Ki;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.1-9
    • /
    • 2010
  • Since the horizontal global radiation and cloud cover are a main factor for designing any solar photovoltaic system, it is necessary to evaluate its characteristics all over the country. The work presented here are the investigation of horizontal global radiation and cloud cover in Korea. The data utilized in the investigation consist of horizontal global radiation and cloud cover collected for 27 years(1982. 12~2008. 12) at measuring stations across the country. The analysis shows that the annual-average daily horizontal global radiation is $3.61\;kWh/m^2$ and the annual-average daily cloud cover is 5.1 in Korea. We also constructed the contour map of cloud cover in Korea by interpolating actually measured data across the country.

Thermodynamic Analysis of a Double-Effect Absorption Heating System Using Water-LiBr-LiSCN Solution with Solar Evaporator Heating (증발기 열원으로 태양열을 이용하며 LiSCN+LiBr 수용액을 사용하는 흡수식 2중효용 난방시스템의 열역학적 해석)

  • Won, Seung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.3
    • /
    • pp.27-35
    • /
    • 2005
  • In this paper, a thermodynamic analysis was performed to provide design data for a double-effect absorption heating system with water-LiBr-LiSCN mixture which utilizes solar energy as evaporator heat source. In addition, a comparative study of the water-LiBr-LiSCN mixture against the water-LiBr pair was conducted by a computer simulation. The computer simulation is based on mass, material and heat balance equations for each part of the system. Coefficients of performance and flow ratios for effects of different operating temperatures are investigated. It is found that the heating COP is higher for the water-LiBr-LiSCN mixture than for the water-LiBr pair, and FR is lower for the former.

A Study on the characteristic solar heat system with season (태양열시스템의 계절에 따른 온수급탕에 관한 운전특성연구)

  • Shin, Young-Shik;Jung, Sung-Chan;Cha, In-Su;Choi, Jeong-Sik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.199-202
    • /
    • 2009
  • Domestic new recycling energy supply is on the way in various form and capacity locally through the support of governmen aid. Among these, solar energy supply is the most in scale and facility. In this paper, we intended to analysis the characteristics of solar energy operation system with season.

  • PDF

Development of the power supply system of single module type using solar energy (태양에너지를 이용한 단일 모듈 형태의 전원공급시스템 개발)

  • Ahn, In-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.658-661
    • /
    • 2010
  • The application of solar energy with creation of new industry is becoming diversification together. In this paper, we implement power supply the system of the single module type using solar energy. Through the implementation, we improve performance of system and it will be able to use for a long time efficiently also in the place where the electrical supply is difficult.

  • PDF