• 제목/요약/키워드: Solar Energy Conversion Efficiency

검색결과 504건 처리시간 0.031초

반사판을 이용한 고정식 집속형 태양광.열복합패널의 성능평가 (Performance Evaluation of Fixed-concentrated Photovoltaic/Thermal Hybrid Panel using Reflector)

  • 서유진;허창수
    • 한국태양에너지학회 논문집
    • /
    • 제25권4호
    • /
    • pp.85-92
    • /
    • 2005
  • One of the most effective methods for utilizing solar energy is to combine thermal solar and optical energy simultaneously using a hybrid panel. Many systems using various kinds of photovoltaic panels have already been constructed. But utilizing solar energy by means of a hybrid panel with concentrator has not been to be attempted yet. Normally if sunlight is directed on the solar cell, and there is no increase in temperature, the absorption energy of each cell will increase per unit area. In a silicon solar cell. however, cell conversion efficiency decreases according to the increasing temperature. Therefore, to maintain cell conversion efficiency under normal condition, it is necessary to keep the cell at operating temperature. we design and make new hybrid panel with cooling system to prevent increasing of temperature on cell, collect effectively thermal energy. We compared performance of new hybrid panel with PV module and thermal panel. We also evaluated conversion efficiency, electric power and thermal capacity and confirmed cooling effect from thermal absorption efficiency.

PV모듈의 냉각장치를 적용한 집속형 복합패널의 집열 특성 평가 (Thermal Characteristics Evaluation of Concentrated Hybrid Panel with cooling system on PV module)

  • 서유진;허창수
    • 한국태양에너지학회 논문집
    • /
    • 제25권3호
    • /
    • pp.47-52
    • /
    • 2005
  • Normally if sunlight is directed on a solar cell without any increasing in temperature, the amount of absorption energy per unit area of each cell is increasing. In a silicon solar cell. however, cell conversion efficiency decreases with the increase of temperature. Therefore, to maintain cell conversion efficiency under normal condition, it is necessary to keep the cell at operating temperature. We tried to design and make new hybrid panel with cooling system to prevent increasing of temperature on cell, collect and use thermal energy more effectively. We compared performance of this new hybrid panel with current thermal panel. We also evaluated conversion efficiency, thermal capacity and confirmed cooling effects from thermal absorption efficiency.

Electrocatalytic Activity of Sulfamic Acid Doped Polyaniline Nanofiber Counter Electrode for Dye Sensitized Solar Cell

  • 조철기;;;김영순;양오봉;신형식
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.385-385
    • /
    • 2009
  • Uniform polyaniline nanofibers (PANI NFs), and chemically doped sulfamic acid(SFA) PANI NFs, synthesized via template free interfacial polymerization process, were used as new counter electrodes materials for the fabrication of the highly-efficient dyesensitized solar cells (DSSCs). The PANI NFs based fabricated DSSCs exhibited a solarto-electricity conversion efficiency of ~ 4.02% while, the SFA doped PANI NFs based DSSC demonstrated ~ 27% improvement in the solar-to-electricity conversion efficiency. The obtained solar-to-electricity conversion efficiency for SFA doped PANI NFs based DSSC was 5.47% under 100mW/$cm^2$(AM1.5). The enhancement in the conversion efficiency was due to the incorporation of SFA into the PANI NFs which resulted to the higher electrocatalytic activity for the $I^{3-}/I^-$ redox reaction.

  • PDF

Thin Film Si-Ge/c-Si Tandem Junction Solar Cells with Optimum Upper Sub- Cell Structure

  • Park, Jinjoo
    • Current Photovoltaic Research
    • /
    • 제8권3호
    • /
    • pp.94-101
    • /
    • 2020
  • This study was trying to focus on achieving high efficiency of multi junction solar cell with thin film silicon solar cells. The proposed thin film Si-Ge/c-Si tandem junction solar cell concept with a combination of low-cost thin-film silicon solar cell technology and high-efficiency c-Si cells in a monolithically stacked configuration. The tandem junction solar cells using amorphous silicon germanium (a-SiGe:H) as an absorption layer of upper sub-cell were simulated through ASA (Advanced Semiconductor Analysis) simulator for acquiring the optimum structure. Graded Ge composition - effect of Eg profiling and inserted buffer layer between absorption layer and doped layer showed the improved current density (Jsc) and conversion efficiency (η). 13.11% conversion efficiency of the tandem junction solar cell was observed, which is a result of showing the possibility of thin film Si-Ge/c-Si tandem junction solar cell.

Near-IR Quantum Cutting Phosphors: A Step Towards Enhancing Solar Cell Efficiency

  • Jadhav, Abhijit P.;Khan, Sovann;Kim, Sun Jin;Cho, So-Hye
    • Applied Science and Convergence Technology
    • /
    • 제23권5호
    • /
    • pp.221-239
    • /
    • 2014
  • The global demand for energy has been increasing since past decades. Various technologies have been working to find a suitable alternative for the generation of sustainable energy. Photovoltaic technologies for solar energy conversion represent one of the significant routes for the green and renewable energy production. Despite of remarkable improvement in solar cell technologies, the generation of power is still suffering with lower energy conversion efficiency, high production cost, etc. The major problem in improving the PV efficiency is spectral mismatch between the incident solar spectrum and bandgap of a semiconductor material used in solar cell. Luminescent materials such as rare-earth doped phosphor materials having the quantum efficiency higher than unity can be helpful for photovoltaic applications. Quantum cutting phosphors are the most suitable candidates for the generation of two or more low-energy photons for the absorption of every incident high-energy photons. The phosphors which are capable of converting UV photon to visible and near-IR (NIR) photon are studied primarily for photovoltaic applications. In this review, we will survey various near IR quantum cutting phosphors with respective to their synthesis method, energy transfer mechanism, nature of activator, sensitizer and dopant materials incorporation and energy conversion efficiency considering their applications in photovoltaics.

태양전지 변환 효율 향상을 위한 근적외선 파장 변환 필름에 관한 연구 (A Study on the Near Infrared Ray Wavelength Conversion Film for Improving Conversion Efficiency of Solar Cell)

  • 박병규;박계춘;이진
    • 한국전기전자재료학회논문지
    • /
    • 제30권11호
    • /
    • pp.699-704
    • /
    • 2017
  • The amount of electric power for photovoltaic power generation depends on the location of the power plant and the direction of solar cell. The solar cell controls the generation of solar power plants. Therefore, the structure of solar cell, manufacturing method, and optic technology were factors contributing to increased solar cell efficiency; however, the technical limit has been reached. Herein, we propose a new method to increase the solar cell efficiency using a wavelength conversion technology that converts ultraviolet and infrared rays, which are not effectively used in solar cells, into effective wavelength of solar cell. We used fluoride $Na(Ca)YF_4$ phosphor for wavelength conversion. Then, a wavelength-conversion fluorescent paste, prepared using an organic-silicon binder, was used to prepare a film that was applied to Si solar cells. It was confirmed that conversion efficiency improved by 5% or more.

반사판을 이용한 고정식 집속형 복합 Panel에 대한 연구 (A Study on the Fixed-Concentrating Hybrid Panel using Reflector)

  • 김규조;김완태;이태호;유형철;허창수
    • 한국태양에너지학회 논문집
    • /
    • 제21권2호
    • /
    • pp.1-8
    • /
    • 2001
  • The most effective methods for utilizing solar energy are to use the sunlight and solar thermal energy such as hybrid panel simultaneously and to use concentrator. From such a view point systems using various kinds of photovoltaic panels are constructed in the world. However, there has not been a hybrid panel with a concentrator. If the sunlight is concentrated on solar cell, cell conversion efficiency increases and the temperature of the solar cell s increases. As the temperature of the solar cells increases, the cell conversion efficiency gradually decreases. For maintaining the cell conversion efficiency constant, it is necessary to keep solar cell at low temperature. In this paper, after designing a concentration rate for concentrating, we propose a model for cooling the cell and for using wasted heat. And, we compare it with conventional panels after calculating the electrical and thermal efficiency, using the energy balance equation.

  • PDF

Down-Conversion Effect Applied to GaAs p-i-n Single Junction Solar Cell

  • 박준서;김지훈;고형덕;이기용;김정혁;한일기
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.694-694
    • /
    • 2013
  • With the growing need of more effective energy harvesting, solar energy has been sought as one of the prominent candidates among the eco-friendly methods. Although many types of solar cells have been developed, the electronic conversion efficiency is limited by the material's physical properties: solar cells can only harvest solar energy from limited range in solar energy spectrum. To overcome this physical limit, we approached by using the down conversion effect, transforming the high energy photons to low energy photons, to the range the designated solar cell can convert to electronic energy. In our study, we have fabricated GaAs single junction solar cells and applied CdSe quantum dots for down-conversion. We examine the effects of such application on the solar cell efficiancy, fill-factor, JSC, VOC, etc.

  • PDF

Improved Energy Conversion Efficiency of Dye-sensitized Solar Cells Fabricated using Open-ended TiO2 Nanotube Arrays with Scattering Layer

  • Rho, Won-Yeop;Chun, Myeoung-Hwan;Kim, Ho-Sub;Hahn, Yoon-Bong;Suh, Jung Sang;Jun, Bong-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권4호
    • /
    • pp.1165-1168
    • /
    • 2014
  • We prepared dye-sensitized solar cells (DSSCs) with enhanced energy conversion efficiency using open-ended $TiO_2$ nanotube arrays with a $TiO_2$ scattering layer. As compared to closed-ended $TiO_2$ nanotube arrays, the energy conversion efficiency of the open-ended $TiO_2$ nanotube arrays was increased from 5.63% to 5.92%, which is an enhancement of 5.15%. With the $TiO_2$ scattering layer, the energy conversion efficiency was increased from 5.92% to 6.53%, which is an enhancement of 10.30%. After treating the open-ended $TiO_2$ nanotube arrays with $TiCl_4$, the energy conversion efficiency was increased from 6.53% to 6.89%, a 5.51% enhancement, which is attributed to improved light harvesting and increased dye adsorption.

40keV 저에너지 전자빔을 이용한 단결정 Si 태양전지의 변환 효율에 관한 연구 (Study about Conversion Efficiency of c-Si Solar Cells Using Low energy(40keV) Electron Beam)

  • 윤정필;강병복;박세준;윤필현;차인수
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.942-948
    • /
    • 2003
  • This paper about the small electron beam irradiator for solar cell's efficiency. Many things are studied by method to increase conversion efficiency of solar cell. We selected electron beam by method for conversion efficiency of solar cell. Energy bands of this electron beam irradiator is 80keV(max.). And, solar cells that apply in this paper are crystal Si. Average efficiency of solar cell that applies in this experiment is 10$\%$. This system manufactured low energy electron beam irradiator. And, electron beam irradiation to solar cell in vacuum chamber of this irradiator. Irradiation area is 20*20 [mm2] by 40[keV].

  • PDF