DOI QR코드

DOI QR Code

A Study on the Near Infrared Ray Wavelength Conversion Film for Improving Conversion Efficiency of Solar Cell

태양전지 변환 효율 향상을 위한 근적외선 파장 변환 필름에 관한 연구

  • Park, Byung Kyu (CS Energy Corporation) ;
  • Park, Gye Choon (Department of Electrical and Control Engineering, Mokpo National University) ;
  • Lee, Jin (Department of Electrical and Control Engineering, Mokpo National University)
  • 박병규 (씨에스에너지(주)) ;
  • 박계춘 (목포대학교 공과대학 전기 및 제어공학과) ;
  • 이진 (목포대학교 공과대학 전기 및 제어공학과)
  • Received : 2017.09.23
  • Accepted : 2017.09.28
  • Published : 2017.11.01

Abstract

The amount of electric power for photovoltaic power generation depends on the location of the power plant and the direction of solar cell. The solar cell controls the generation of solar power plants. Therefore, the structure of solar cell, manufacturing method, and optic technology were factors contributing to increased solar cell efficiency; however, the technical limit has been reached. Herein, we propose a new method to increase the solar cell efficiency using a wavelength conversion technology that converts ultraviolet and infrared rays, which are not effectively used in solar cells, into effective wavelength of solar cell. We used fluoride $Na(Ca)YF_4$ phosphor for wavelength conversion. Then, a wavelength-conversion fluorescent paste, prepared using an organic-silicon binder, was used to prepare a film that was applied to Si solar cells. It was confirmed that conversion efficiency improved by 5% or more.

Keywords

References

  1. E. K. Liu, Photovoltaic Cell Devices and Its Application (Science Press, Beijing, 1980).
  2. D. F. Wang, X. D. Zhang, Y. J. Liu, C. Y. Wu, C. S. Zhang, C. C. Wei, and Y. Zhao, Chin. Phys. B, 22, 027801 (2013). [DOI: https://doi.org/10.1088/1674-1056/22/2/027801]
  3. A. C. Tropper, J. N. Carter, R.D.T. Lauder, D. C. Hanna, S. T. Davey, and D. Szebesta, J. Opt. Soc. Am. B, 11, 886 (1994). [DOI: https://doi.org/10.1364/JOSAB.11.000886]
  4. T. Trupke, A. Shalav, B. S. Richards, P. Wurfel, and M. A. Green, Sol. Energy Mater. Sol. Cells, 90, 3327 (2006). [DOI: https://doi.org/10.1016/j.solmat.2005.09.021]
  5. P. Gibart, F. Auzel, J. C. Guillaume, and K. Zahraman, Jpn. J. Appl. Phys., 35, 4401 (1996). [DOI: https://doi.org/10.1143/JJAP.35.4401]
  6. A. Shalav, B. S. Richards, T. Trupke, K. W. Kramer, and H. U. Gudel, Appl. Phys. Lett., 86, 013505 (2005). [DOI: https://doi.org/10.1063/1.1844592]
  7. G. K. Liu, H. Z. Zhuang, and X. Y. Chen, Nano Lett. 2, 535 (2002). [DOI: https://doi.org/10.1021/nl0255303]
  8. X. Y. Chen, H. Z. Zhuang, and G. K. Liu, J. Appl. Phys., 94, 5559 (2003). [DOI: https://doi.org/10.1063/1.1614865]
  9. G. K. Liu, X. Y. Chen, H. Z. Zhuang, S. Li, and R. S. Niedbala, J. Solid State Chem., 171, 123 (2003). [DOI: https://doi.org/10.1016/S0022-4596(02)00195-0]
  10. G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L. H. Guo, Nano Lett., 4, 2191 (2004). [DOI: https://doi.org/10.1021/nl048680h]
  11. J. F. Suyver, J. Grimm, K. W. Kramer, and H. U. Gudel, J. Lumin., 114, 53 (2005). [DOI: https://doi.org/10.1016/j.jlumin.2004.11.012]