• 제목/요약/키워드: Solar Control Device

검색결과 117건 처리시간 0.027초

접이식 풍력 Sail 돛 제어장치를 적용한 친환경 태양광 레져보트의 성능평가 (A study on the performance evaluation and technical development of an eco-environmental photovoltaic solar leisure boat with applied sail control device)

  • 문병영;이성범;이기열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권3호
    • /
    • pp.240-248
    • /
    • 2016
  • 본 기술개발의 목적은 선박제조에 적용되는 태양광 발전시스템 및 풍력 Sail 돛 제어장치 설비를 이용하여 친환경 레져보트인 '풍력 Sail 돛 제어장치를 이용한 태양광 레져보트' 시제품을 제작 및 개발하는데 주안점이 있으며, 이 과정에서 제작된 시제품에 대한 성능평가를 수행하여 제반 평가항목에 대한 정량적 수치 및 개발 목표치를 확보하고자 함에 있다. 특히, 평가항목 중 중요 항목에 해당되는 Sail Up/Down System 및 Mast Turning System과 관련하여 최적의 풍향 및 풍속을 적용할 수 있는 돛 제어장치의 특성(시간, 각도 등)을 평가하는데 신중한 검토를 하였으며, 기타 평가항목 중 주요 항목에 해당하는 풍향 감지 정도(%), 순간 충전 최대 전력(W) 및 최대 운항 시간(hr) 등에 대해서도 최적의 정량적 수치를 획득하는데 그 중요성을 두었다.

A Study on SSDP protocol based IoT / IoL Device Discovery Algorithm for Energy Harvesting Interworking Smart Home

  • Lee, Jonghyeok;Han, Jungdo;Cha, Jaesang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제10권2호
    • /
    • pp.7-12
    • /
    • 2018
  • The spread of IoT (Internet of Things) technology that connects objects based on wired / wireless networks is accelerating, and IoT-based smart home technology that constitutes a super connected network connecting sensors and home appliances existing inside and outside the home is getting popular. In addition, demand for alternative energy technologies such as photovoltaic power generation is rapidly increasing due to rapid increase of consumption of energy resources. Recently, small solar power systems for general households as well as large solar power systems for installation in large buildings are being introduced, but they are effectively implemented due to limitations of small solar panels and lack of power management technology. In this paper, we have studied smart home structure and IoT / IoL device discovery algorithm for energy harvesting system based on photovoltaic power generation, It is possible to construct an efficient smart home system for device control.

건물에너지 저감을 위한 향별 슬랫형 블라인드의 최적각도 제어 알고리즘 산출 (Optimized slat angle control algorithm prediction of venetian blind depending on window orientation for energy saving)

  • 권혁주;이금호;이광호
    • KIEAE Journal
    • /
    • 제17권3호
    • /
    • pp.99-106
    • /
    • 2017
  • Purpose: Most modern office buildings adopt the curtain wall system in order to provide occupants with the sense of openness and high-technology, which requires large window area. As a result, the amount of solar radiation increases, negatively affecting cooling load during the summer and increasing energy costs. However, the performance of window itself is not sufficiently controllable parameter to control thermal comfort and solar radiation. Therefore, a shading device such as venetian blind is required to control them and thus a variety of studies have been performed thus far. So, the purpose of this study is to improve the performance of blind through the development of blind control algorithm. Method: Among various input variables for the control of venetian blinds, the vertical solar radiation has been selected in this study as the primary input variable and the optimal control algorithm for venetian blinds were developed for each window orientation. Result: The developed optimal control algorithm has a positive effect on building energy savings.

Study on Solution-Processed Flexible Electrochromic Devices with Improved Coloration Efficiency and Stability

  • Gihwan Song;Haekyoung Kim
    • 한국전기전자재료학회논문지
    • /
    • 제36권1호
    • /
    • pp.1-9
    • /
    • 2023
  • According to the recent global warming, it is necessary to use energy efficiently together with eco-friendly energy. The development of alternative technologies is requisite for managing the current energy and climate crises. In this regard, "smart windows," which can control solar radiation, can be used to mitigate energy demands. Electrochromic devices (ECDs) effectively control the amount of solar energy reaching commercial and other living areas and maintain climate conditions via color modulation in response to small external stimuli, such as temperature and light irradiation. However, the performance and the stability of ECDs depend on the state of the electrolyte and sealing of the device. To resolve the aforementioned issues, an ECD was manufactured by using a poly (methyl methacrylate) (PMMA)-based gel polymer electrolyte (GPE), and a laminating method was used to adequately seal the ECD. The concentrations of PMMA, acetonitrile (ACN), and ferrocene (Fc) were controlled to optimize the composition of the GPE to achieve an enhanced electrochromic performance. The fabricated GPE-based ECD afforded high optical contrast (~81.92%), with high electrochromic stability up to 10,000 cycles. Moreover, the lamination method employing the GPE could be used to fabricate large-area ECDs.

공동주택 거주자의 실내 차양장치 사용행태에 관한 연구 (Occupants Control Patterns of Indoor Shading Devices in Apartment Buildings)

  • 이윤정;김정태
    • 한국태양에너지학회 논문집
    • /
    • 제34권3호
    • /
    • pp.12-20
    • /
    • 2014
  • There is no comprehensive consensus of the control patterns people op::rate shadings or the motivating factors that influence their decisions. Patterns of shading devices use can affect the energy consumption of buildings. Therefore, this study aims to analyze shading device usage patterns based on the physical factors that can affect occupants behavior. First, control patterns of indoor shading devices in apartment buildings were monitored by taking pictures. Next, frequency of shading device use together with their shading portions was analyzed based on two physical factors such as window orientation and floor level. The results showed that about 35% of the monitored apartment buildings utilized indoor shading devices. Also, the south-facing apartments were more dynamically used than their east-facing counterparts. On the contrary, there was no general trend in regards to the shading operation patterns.

승압 강압 콤비네이션 모드가 가능한 고효율 태양광 충전용 DC-DC 컨버터 (High efficiency photovoltaic DC-DC charger possible to use the buck and boost combination mode)

  • 이상훈
    • 한국산업융합학회 논문집
    • /
    • 제20권2호
    • /
    • pp.97-104
    • /
    • 2017
  • In the present industrial field, the demand for the development of the solar power source device and the charging device for the solar cell is gradually increasing. The solar charger is largely divided into a DC-DC converter that converts the voltage generated from the sunlight to a charging voltage, and a battery and a charger that are charged with an actual battery. The conventional charger topology is used either as a Buck converter or a Boost converter alone, which has the disadvantage that the battery can not always be charged to the desired maximum power as input and output conditions change. Although studies using a topology capable of boosting and stepping have been carried out, Buck-Boost converters or Sepic converters with relatively low efficiency have been used. In this paper, we propose a new Buck Boost combination power converter topology structure that can use Buck converter and Boost converter at the same time to improve inductor current ripple and power converter efficiency caused by wide voltage control range like solar charger.

모바일 장치를 이용한 태양광 가로등 모니터링 시스템 (A Monitoring System for Solar Street Lights Using Mobile Devices)

  • 양민혁;오병우
    • 한국기계가공학회지
    • /
    • 제13권3호
    • /
    • pp.15-21
    • /
    • 2014
  • The utilization range of mobile devices is becoming broader than before due to the rapid development of the mobile market. Furthermore, the demands for computer-aided management are increasing due to the extensive expansion of the installation of solar street lights. In this paper, we propose a system which can be used to observe solar street lights. The manager of the system can control and manage the solar street lights using video images on a mobile device.

Assessment of Earth Remote Sensing Microsatellite Power Subsystem Capability during Detumbling and Nominal Modes

  • Zahran M.;Okasha M.;Ivanova Galina A.
    • Journal of Power Electronics
    • /
    • 제6권1호
    • /
    • pp.18-28
    • /
    • 2006
  • The Electric Power Subsystem (EPS) is one of the most critical systems on any satellite because nearly every subsystem requires power. This makes the choice of power systems the most important task facing satellite designers. The main purpose of the Satellite EPS is to provide continuous, regulated and conditioned power to all the satellite subsystems. It has to withstand radiation, thermal cycling and vacuums in hostile space environments, as well as subsystem degradation over time. The EPS power characteristics are determined by both the parameters of the system itself and by the satellite orbit. After satellite separation from the launch vehicle (LV) to its orbit, in almost all situations, the satellite subsystems (attitude determination and control, communication and onboard computer and data handling (OBC&DH)), take their needed power from a storage battery (SB) and solar arrays (SA) besides the consumed power in the EPS management device. At this point (separation point, detumbling mode), the satellite's angular motion is high and the orientation of the solar arrays, with respect to the Sun, will change in a non-uniform way, so the amount of power generated by the solar arrays will be affected. The objective of this research is to select satellite EPS component types, to estimate solar array illumination parameters and to determine the efficiency of solar arrays during both detumbling and normal operation modes.

NFRC 201 실험방법에 의한 내부 차양장치가 적용된 창호의 일사획득계수 평가 (Evaluation on the Solar Heat Gain Coefficient of Glazing System installed in internal shading device by experiments according to the NFRC 201)

  • 임재한;송승영
    • 한국태양에너지학회 논문집
    • /
    • 제30권3호
    • /
    • pp.47-54
    • /
    • 2010
  • Recently the researchers has been interested in the development of the high performance windows such as solar control window using automatic shading devices, air-flow window, selective coating window. In order to assess the energy performance of total fenestration system, the net energy gains or losses through the glazings and windows should be evaluated. It depends on the thermal transmittance (U-value) and the total solar energy transmittance (SHGC, g-value). This study aims to measure the solar heat gain coefficient according to the NFRC 201 standard test method. In results, we could find the result of different SHGC of the glazing system with a different slat angles. The SHGC in case of $90^{\circ}$ of internal slat angle with regard to the window surface is about 0.56, that in case of $45^{\circ}$ is about 0.49 and that in case of $0^{\circ}$ is about 0.33. Significant dependence on the solar radiation intensity and incident angle was found in comparison of the measured and simulated SHGC.

자연형 및 설비형 태양열 온수기의 이용특성에 대한 실험적 연구 (The Experimental Research for the Use Characteristics of the Passive and Active type Domestic Solar Hot Water Systems)

  • 이동원;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제33권5호
    • /
    • pp.82-88
    • /
    • 2013
  • There are the stirring test and drain test in the daily performance test to determine the thermal performance of a domestic solar hot water system. The drain test is a test that measures the discharge heating rate while drain the hot water from the top of the storage tank and supply the city water to the bottom of the tank. From the perspective of the user, this drain test is more effective than the stirring test. In this study, the thermal performance were compared through the drain test for a passive type and an active type domestic solar hot water systems consisting of the same storage tank and collectors. At this point, a passive type was used the horizontal storage tanks, and an active type was used vertical storage tank. In the drain test, when the hot water drained up to the reference hot water temperature, an active type which have vertical storage tank represents excellent daily performance than a passive type which have horizontal storage tank regardless of weather conditions. The reason for this is because the vertical storage tank is advantageous to thermal stratification in the tank. After the drain test, the residual heat for the horizontal storage tank was much more than the vertical storage tank, but in the next day the amount of discharged heat were less than the those of vertical storage tank neither. Thus, the solar water heating system which have horizontal storage tank should be adopted preheating control method rather than separate using control method when connected with auxiliary heat source device.