• Title/Summary/Keyword: Solar Cell efficiency

Search Result 1,347, Processing Time 0.045 seconds

Study about Conversion Efficiency of c-Si Solar Cells Using Low energy(40keV) Electron Beam (40keV 저에너지 전자빔을 이용한 단결정 Si 태양전지의 변환 효율에 관한 연구)

  • Yoon J.P.;Kang B.B.;Park S.J.;Yoon P.H.;Cha I.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.942-948
    • /
    • 2003
  • This paper about the small electron beam irradiator for solar cell's efficiency. Many things are studied by method to increase conversion efficiency of solar cell. We selected electron beam by method for conversion efficiency of solar cell. Energy bands of this electron beam irradiator is 80keV(max.). And, solar cells that apply in this paper are crystal Si. Average efficiency of solar cell that applies in this experiment is 10$\%$. This system manufactured low energy electron beam irradiator. And, electron beam irradiation to solar cell in vacuum chamber of this irradiator. Irradiation area is 20*20 [mm2] by 40[keV].

  • PDF

A Study of low cost and high efficiency Solar Cell using SOD(spin on doping) (SOD(Spin On Doping)법을 이용한 저가 고효율 태양전지에 관한 연구)

  • Park, Sung-Hyun;Kim, Kyoung-Hae;Mon, Sang-Il;Kim, Dae-Won;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1054-1056
    • /
    • 2002
  • High temperature Kermal diffusion from $POCl_3$ source usually used for conventional process through put of a cell manufacturing line and potentially reduce cell efficiency through bulk like time degradation. To fabricate high efficiency solar cells with minimal thermal processing, spin-on-doping(SOD) technique can be employed to emitter diffusion of a silicon solar cell. A technique is presented to emitter doping of a mono-crystalline solar cell using spin-on doping (SOD). Moreover it is shown that the sheet resistance variation with RTA temperature and time fer mono-crystalline and multi-crystalline silicon samples. This novel SOD technique was successfully used to produces 11.3% efficiency l04mm by 104mm size mono-crystalline silicon solar cells.

  • PDF

A Study for reduction of the power loss of PV modules (PV moudule의 출력손실 저감요인 분석)

  • Lee, Sang-Hun;Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.45-50
    • /
    • 2011
  • The efficiency of solar cell was about 4[%] in initial stage of photovoltaic industry, but it has quite a lot of efficiency through technology advances. Today, the efficiency of c-Si solar cells is about 17 to 19[%] and the efficiency of PV modules is about 14 to 15 [%]. We called that electrical losses occurred in the Conversion of solar cells to PV modules are CTM loss(Cell To Module loss), the CTM loss typically has a value of about3~5[%]. The more efficiency of solar cell increase, differences are larger because the efficiency decrease owing to physical or technical problems occurred in the Conversion of solar cells to PV modules. In this study, the power loss factors occurred in the Conversion of solar cells to PV modules are analyzed and it is proposed that how to reduce losses of the PV module. The types of power loss factor are (1)losses of front glass and encapsulant(generally EVA sheet), (2)losses by sorting miss, (3)losses by interconnection, (4)losses by the field aging of PV modules. In further study, experimental and evaluation will be conducted to make demonstrate for proposed solutions.

  • PDF

Developing Sealing Material of a Dye-Sensitized Solar Cell for Outdoor Power (실외 발전을 위한 염료감응형 태양전지의 봉지재 개발)

  • Ki, Hyun-Chul;Hong, Kyung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.819-823
    • /
    • 2016
  • DSSC (dye-sensitized solar cell) is expected to be one of the next-generation photovoltaics because of its environment-friendly and low-cost properties. However, commercialization of DSSC is difficult because of the electrolyte leakage. We propose thermal curable base on silicon resin and apply a unit cell and large area ($200{\times}200mm$) dye-sensitized solar cell. The resin aimed at sealing of DSSC and gives a promising resolution for sealing of practical DSSC. In result, the photoelectric conversion efficiency of the unit cell and the module was 6.63% and 5.49%, respectively. In the durability test result, the photoelectric conversion efficiency of the module during 500, 1,000, 1,500 and 2,000 hours was 0.73%, 0.73%, 1.82% and 2.36% respectively. It was confirmed that the photoelectric conversion efficiency characteristics are constant. We have developed encapsulation material of thermal curing method excellent in chemical resistance. A sealing material was applied to the dye-sensitized solar cell and it solved the problem of durability the dye-sensitized solar cell. Sealing material may be applied to verify the possibility of practical application of the dye-sensitized solar cell.

Solar Cell Efficiency Improvement using a Pre-deposition Temperature Optimization in The Solar Cell Doping Process (도핑 공정에서의 Pre-deposition 온도 최적화를 이용한 Solar Cell 효율 개선)

  • Choi, Sung-Jin;Yoo, Jin-Su;Yoo, Kwon-Jong;Han, Kyu-Min;Kwon, Jun-Young;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.244-244
    • /
    • 2010
  • Doping process of crystalline silicon solar cell process is very important which is as influential on efficiency of solar. Doping process consists of pre -deposition and diffusion. Each of these processes is important in the process temperature and process time. Through these process conditions variable, p-n junction depth can be controled to low and high. In this paper, we studied a optimized doping pre-deposition temperature for high solar cell efficiency. Using a $200{\mu}m$ thickness multi-crystalline silicon wafer, fixed conditions are texture condition, sheet resistance($50\;{\Omega}/sq$), ARC thickness(80nm), metal formation condition and edge isolation condition. The three variable conditions of pre-deposition temperature are $790^{\circ}C$, $805^{\circ}C$ and $820^{\circ}C$. In the $790^{\circ}C$ pre-deposition temperature, we achieved a best solar cell efficiency of 16.2%. Through this experiment result, we find a high efficiency condition in a low pre-deposition temperature than the high pre-deposition temperature. We optimized a pre-deposition temperature for high solar cell efficiency.

  • PDF

Study of hydrogenated a-SiGe cell for middle cell of Triple junction solar cell (Triple junction 태양전지의 a-SiGe middle cell에 관한 연구)

  • Park, Taejin;Baek, Seungjo;Kim, Beomjoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.83.1-83.1
    • /
    • 2010
  • Hydrogenated a-SiGe middle cell for triple junction solar cell was investigated with various process parameters. a-SiGe I-layer was deposited at substrate temperature $245^{\circ}C$ and hydrogen content(R) was up to 26.7. Low optical bandgap(1.45eV) of a-SiGe cell was applied for middle cell although a-SiGe single cell efficiency with low Ge content was higher. And this cell was applied to the middle cell of a glass superstrate type a-Si/a-SiGe/uc-Si triple junction solar cell. The triple junction solar cell was resulted in the initial efficiency of about 9%, area $0.25cm^2$, under global AM 1.5 illumination.

  • PDF

Performance Measurement Method of Several Types of Photovoltaic Module Depending on Efficiency (고효율 태양전지모듈의 성능측정 방법)

  • Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Yoon, Soon-Gil
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.93-99
    • /
    • 2011
  • To guarantee more exact maximum power of solar cell module, it is absolutely required to have performance characteristics of various solar cells. Today, there are many types of solar simulator for large area measurement. But it is very opaque how to select the best one for various solar cell module like crystalline silicon solar cell, high efficiency solar cell, amorphous silicon thin film solar cell, CdTe and CIGS solar cell module. So, in this paper 4 types of photovoltaic module were selected to compare the electrical characteristics by changing light pulse duration time and voltage scan direction. Light pulse duration time was varied from 10msec to 800msec. And two types of voltage scan directions, Voc->Isc and Isc->Voc were selected. From this results, optimum measuring condition was suggested and electrical variation was analysed for each types of solar cell module. The detail description is specified as the following paper.

Efficiency Improvement in Screen-printed Crystalline Silicon Solar Cell with Light Induced Plating (광유도도금을 이용한 스크린 프린팅 결정질 실리콘 태양전지의 효율 향상)

  • Jeong, Myeong Sang;Kang, Min Gu;Chang, Hyo Sik;Song, Hee-Eun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.246-251
    • /
    • 2013
  • Screen printing is commonly used to form the front/back electrodes in silicon solar cell. But it has caused high resistance and low aspect ratio, resulting in decreased conversion efficiency in solar cell. Recently the plating method has been combined with screen-printed c-Si solar cell to reduce the resistance and improve the aspect ratio. In this paper, we investigated the effect of light induced silver plating with screen-printed c-Si solar cells and compared their electrical properties. All wafers were textured, doped, and coated with anti-reflection layer. The metallization process was carried out with screen-printing, followed by co-fired. Then we performed light induced Ag plating by changing the plating time in the range of 20 sec~5min with/without external light. For comparison, we measured the light I-V characteristics and electrode width by optical microscope. During plating, silver ions fill the porous structure established in rapid silver particle sintering during co-firing step, which results in resistance decrease and efficiency improvement. The plating rate was increased in presence of light lamp, resulting in widening the electrode with and reducing the short-circuit current by shadowing loss. With the optimized plating condition, the conversion efficiency of solar cells was increased by 0.4% due to decreased series resistance. Finally we obtained the short-circuit current of 8.66 A, open-circuit voltage of 0.632 V, fill factor of 78.2%, and efficiency of 17.8% on a silicon solar cell.

Manufacturing and Thermal Process Optimization of Ag-paste for Fabricating High Efficiency Mono-Si Solar Cell (고효율 단결정 Si 태양전지 제작을 위한 은 페이스트의 제조 및 열 공정 최적화)

  • Pi, Ji-Hee;Kim, Sung-Jin;Son, Chang-Rok;Kweon, Soon-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.144-150
    • /
    • 2013
  • A New Ag-pastes were developed for integrating the high efficiency mono-Si solar cell. The pastes were the mixture of 84 wt% Ag, 2 wt% glass frit, 11 wt% solvent of buthyl cabitol acetate, and 3 wt% additives. After fabricating the Ag-pastes by using a 3-roll mill, they were coated on a $SiN_x$/n+/p- stacks of a commercial mono-Si solar cell. And the post-thermal process was also optimized by varying the process conditions of peak temperature. The optimized solar cell efficiency on a 6-inch mono-Si wafer was 18.28%, which was the one of the world best performances. It meaned that the newly developed Ag-paste could be adopted to fabricate a commercial bulk Si solar cell.