• Title/Summary/Keyword: Solar Cell System

Search Result 789, Processing Time 0.025 seconds

Gravure Offset Printing for Printed Electronics (인쇄전자를 위한 그라비아 옵셋 인쇄)

  • Kim, Chung-Hwan;Choi, Byung-Oh;Ryu, Byung-Soon;Kim, Dong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.96-102
    • /
    • 2008
  • Manufacturing of printed electronics using printing technology has begun to get into the hot issue in many ways due to the low cost effectiveness to existing semi-conductor process. This technology, with low cost and high productivity, can make it possible to produce printed electronics such as TFT, solar cell, RFID Tag, printed battery, and so on. In this study, apparatus of gravure-offset printing are developed for fine line-width/gap printing and the results obtained from the apparatus shows that it is possible to make around 20 micro-meter line-width/gap printing patterns. The roll-to-roll printing system for fine line-width printing based on primary experiment is presented. The printing results obtained from the system shows around 30 micro-meter line-width/gap printing patterns.

Analysis on the Water Footprint of Crystalline Silicon PV System (결정질 실리콘 태양광시스템의 물 발자국 산정에 대한 연구)

  • Na, Won-Cheol;Kim, Younghwan;Kim, Kyung Nam;Lee, Kwan-Young
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.449-456
    • /
    • 2014
  • There has been increasing concerns for the problems of water security in countries, caused by the frequent occurrence of localized drought due to the climate change and uncertainty of water balance. The importance of fresh water is emphasized as considerable amount of usable fresh water is utilized for power generation sector producing electricity. PV power system, the source of renewable energy, consumes water for the every steps of life cycle: manufacturing, installation, and operation. However, it uses relatively less water than the traditional energy sources such as thermal power and nuclear power sources. In this study, to find out the use of water for the entire process of PV power system from extracting raw materials to operating the system, the footprint of water in the whole process is measured to be analyzed. Measuring the result, the PV water footprint of value chain was $0.989m^3/MWh$ and the water footprint appeared higher specially in poly-Si and solar cell process. The following two reasons explain it: poly-Si process is energy-intensive process and it consumes lots of cooling water. In solar cell process, deionized water is used considerably for washing a high-efficiency crystalline silicon. It is identified that PV system is the source using less water than traditional ones, which has a critical value in saving water. In discussing the future energy policy, it is vital to introduce the concept of water footprint as a supplementary value of renewable energy.

Independent MPP Tracking Method of Hybrid Solar-Wind Power Conditioning Systems Using Integrated Dual-Input Single-PWM-Cell Converter Topology

  • Thenathayalan, Daniel;Ahmed, Ashraf;Choi, Byung-Min;Park, Jeong-Hyun;Park, Joung-Hu
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.790-802
    • /
    • 2017
  • This paper proposes the modeling and control strategy to track the MPPs of hybrid PV and Wind power systems, using a new dual input boost converter. The dual input power conditioning system with an independent MPPT control scheme is introduced with minimum number of circuit elements in order to reduce the switching loss, size and cost of the system. Since the operating conditions for the PV and Wind power systems are very distinct from each other, an efficient and superior control system is required to track the MPPs of both renewable sources with the use of a simply-structured single-ended single-inductor converter. The design of Power-Conditioning System (PCS) and detail control strategy are presented in this paper. To provide independent tracking of MPPs, a variable duty-cycle control strategy is employed for the wind system and a variable frequency strategy is employed for the PV system. Finally, the proposed dual-input converter for hybrid power conditioning system is implemented and the hardware test results are presented. From the hardware experiment, it is concluded that the proposed system successfully tracks the MPPs of both of the renewable power systems independently.

Guard Lamp using Solar Cell (태양광을 이용한 정원등)

  • Kang Byung-Bog;Cha In-Su;Lim Jung-Yeol;Yoon Jeong-Phil;Park Se-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.129-132
    • /
    • 2004
  • A guard lamp system has been installed at the PV positive center, located at Gwangju in Korea. Digital environment that is represented to internet is displacing business way of industry and business achievement way with the fast speed being giving great change on life whole, improve existence business process utilizing internet and Web connection technology, information superhighway to tradition industrialist manufacture and e-transformation's propulsion that wish to maximize productivity and administration efficiency is spread vigorously. In this paper, we wish to accomplish generation equipment's heighten stability and believability through remote monitoring and control of guard lamp system. This paper describes the design of the monitoring system for the sensing data and indirect controlling of the guard lamp system. Most of the conventional monitoring systems depend on the special hardware and software. The essential design of monitoring system is to provide the convenience for the user and the portability for the system. In order for the system to fulfill its requirements, it was designed using Labview GUI facility based on the Windows 2000 environment of IBM PC compatible and Add-oncard based on the TCP/IP protocol. Advantage of the monitoring system are a personnel expenses curtailment effect, of the place restriction and unmanned system of the generationplants, etc..

  • PDF

A study on the Optimum Design Configuration of Passive Solar TI-wall system (투명단열재가 적용된 축열벽 시스템의 최적구성 선정에 관한 연구)

  • Kim, Byoung-Soo;Yoon, Jong-Ho;Yoon, Yong-Jin;Baek, Nam-Choon
    • KIEAE Journal
    • /
    • v.3 no.2
    • /
    • pp.37-44
    • /
    • 2003
  • The aim of this study was to analyze the thermal performance through Test-Cell of TI-wall in domestic climate. This study was carried out as follows: 1) The TI-wall was studied for ability to reduce heat loss through the building envelope and analyzed to TIM properties. 2) Test models of TI-wall were designed through the investigation of previous paper and work, measured for winter and spring, and the thermal effects were analyzed. The type of the TIM used in test model is small-celled(diameter 4mm and thickness 50mm) capillary and cement brick(density $1500kg/m^3$) was used by thermal mass. 3) Test-cell of TI-wall was calibrated from measured data and the dynamic simulation program ESP-r 9.0. In these simulations, the measured climate conditions of TaeJon were used as outdoor conditions, and the simulation model of Test-cell was developed. 4) The sensitivity analysis is executed in various aspects with standard weather files and ESP-r 9.0, and then most suitable system of TI-wall are predicted. Finally, The suitable system of TI-wall was analysed according to sizes of air gap, kinds, thickness, and the surface absorption of therm wall. The result is following. In TI-wall, Concrete is better than cement brick, at that time the surface absorption is 95%, and the most efficient thickness is 250mm. As smaller of a air gap, as reducer of convection heat loss, it is efficient for heating energy. However, ensuring of a air gap at least more than 50mm is desirable for natural ventilation in Summer.

Load Characteristics of the DC GRID Connected to Small Fuel Cells (소형 연료전지 연계형 DC GRID 부하 특성 실험)

  • Lee, Sang-Woo;Kwon, O-Sung;Lee, Sang-Cheol;Bae, Jun-Hyung;Park, Tae-Joon;Kang, Jin-Kyu;Lee, Dong-Ha
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.414-418
    • /
    • 2012
  • In recent years, understanding the dynamics of DC distribution system has become critically important due mainly to the increasing needs for the interconnection of DC distributed generators and the (DC-based) electric vehicle (EV) charging systems. In this paper, the characteristics of the DC grid system connected to the compact proton exchange membrane fuel cell (PEMFC) has been studied. In particular, the voltage and current transient phenomena were measured by varying the load of the DC grid system. Also, the voltage and current ripple were measured at the different load conditions. Our experimental results clearly manifested that the study contributes to the establishment of fundamental method to characterize the small DC grid system including distributed generation.

  • PDF

Study on LED Low-cost Control Technology Associated with User Information Situation (사용자 정보상황 연계형 LED 절감제어기술에 관한 연구)

  • Jang, Tae-Su;Hong, Geun-Bin;Kang, Eun-Young;Kim, Yong-Kab;Kim, Byun-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.743-744
    • /
    • 2012
  • LED digital control convergence technology is receiving attention. It enables to analyze lighting and living environments by recognizing user information and situations through a signal process system composed of a multi-functional composite sensor's module. LED lighting is higly efficient, long-lived, environmentally, and is possible to converge with communication, and receiving as a next-generation general lighting that will replace a florescent light including the light bulb. The proposed system is an intelligent LED control system that uses solar light. This study is about a lighting control technology associated with user-estimated information/situation and related low-cost technology. Also, this study aims to embody emotional lighting by appropriately lighting 10% of the discharge current with supplementary colored LED according to the surrounding environment.

  • PDF

Growth of ZnTe Thin Films by Oxygen-plasma Assisted Pulsed Laser Deposition

  • Pak, Sang-Woo;Suh, Joo-Young;Lee, Dong-Uk;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.185-185
    • /
    • 2011
  • ZnTe semiconductor is very attractive materials for optoelectronic devices in the visible green spectral region because of it has direct bandgap of 2.26 eV. The prototypes of ZnTe light emitting diodes (LEDs) have been reported [1], showing that their green emission peak closely matches the most sensitive region of the human eye. Another application to photovoltaics proved that ZnTe is useful for the production of high-efficiency multi-junction solar cells [2,3]. By using the pulse laser deposition system, ZnTe thin films were deposited on ZnO thin layer, which is grown on (0001) Al2O3substrates. To produce the plasma plume from an ablated ZnO and ZnTe target, a pulsed (10 Hz) YGA:Nd laser with energy density of 95 mJ/$cm^2$ and wavelength of 266 nm by a nonlinear fourth harmonic generator was used. The laser spot focused on the surface of the ZnO and ZnTe target by using an optical lens was approximately 1 mm2. The base pressure of the chamber was kept at a pressure around $10^{-6}$ Torr by using a turbo molecular pump. The oxygen gas flow was controlled around 3 sccm by using a mass flow controller system. During the ZnTe deposition, the substrate temperature was $400^{\circ}C$ and the ambient gas pressure was $10^{-2}$ Torr. The structural properties of the samples were analyzed by XRD measurement. The optical properties were investigated by using the photoluminescence spectra obtained with a 325 nm wavelength He-Cd laser. The film surface and carrier concentration were analyzed by an atomic force microscope and Hall measurement system.

  • PDF

Rechargeable Zn-air Energy Storage Cells Providing High Power Density (고출력.고에너지 밀도의 아연금속-공기전지)

  • Park, Dong-Won;Kim, Jin Won;Lee, Jae Kwang;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.359-366
    • /
    • 2012
  • Zn-Air energy storage cell is an attractive type of batteries due to its theoretical gravimetric energy density, cost-effective structure and environmental-friendly characteristics. The chargeability is the most critical in various industrial applications such as smart portable device, electric vehicle, and power storage system. Thus, it is necessary to reduce large overpotential of oxygen reduction/evolution reaction, the irreversibility of Zn anode, and carbonation in alkaline electrolyte. In this review, we try to introduce recent studies and developments of bi-functional air cathode, enhanced charge efficiency via modification of Zn anode structure, and blocking side reactions applying hybrid organic-aqueous electrolyte for high power density rechargeable Zn-Air energy storage cells.

Grapevine Growth and Berry Development under the Agrivoltaic Solar Panels in the Vineyards (영농형 태양광 시설 설치에 따른 포도나무 생육 및 과실 특성 변화 비교)

  • Ahn, Soon Young;Lee, Dan Bi;Lee, Hae In;Myint, Zar Le;Min, Sang Yoon;Kim, Bo Myung;Oh, Wook;Jung, Jae Hak;Yun, Hae Keun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.356-365
    • /
    • 2022
  • Agrivoltaic systems, also called solar sharing, stated from an idea that utilizes sunlight above the light saturation point of crops for power generation using solar panels. The agrivoltaic systems are expected to reduce the incident solar radiation, the consequent surface cooling effect, and evapotranspiration, and bring additional income to farms through solar power generation by combining crops with solar photovoltaics. In this study, to evaluate if agrivoltaic systems are suitable for viticulture, we investigated the microclimatic change, the growth of vines and the characteristics of grape grown under solar panels set by planting lines compared with ones in open vineyards. There was high reduction of wind speed during over-wintering season, and low soil temperature under solar panel compared to those in the open field. There was not significant difference in total carbohydrates and bud burst in bearing mother branches between plots. Despite high content of chlorophyll in vines grown under panels, there is no significant difference in shoot growth of vines, berry weight, cluster weight, total soluble solid content and acidity of berries, and anthocyanin content of berry skins in harvested grapes in vineyards under panels and open vineyards. It was observed that harvesting season was delayed by 7-10 days due to late skin coloration in grapes grown in vineyards under panels compared to ones grown in open vineyards. The results from this study would be used as data required in development of viticulture system under panel in the future and further study for evaluating the influence of agrivoltaic system on production of crops including grapes.