• Title/Summary/Keyword: Soils and Vegetables

Search Result 52, Processing Time 0.029 seconds

Bioconcentration Factor(BCF) of Perchlorate from Agricultural Products and Soils (농산물과 토양에 대한 퍼클로레이트 함량 평가 및 생물농축계수 산출)

  • Kim, Ji-Young;Kim, Min-Ji;Lee, Jeong-Mi;Kim, Doo-Ho;Park, Ki-Moon;Kim, Won-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.3
    • /
    • pp.224-230
    • /
    • 2013
  • BACKGROUND: Perchlorate(${ClO_4}^-$) is an anion that is extremely water-soluble and environmentally stable. It mostly exists in the form of sodium perchlorate, ammonium perchlorate and potassium perchlorate which are used in rocket fuels, propellants, ignitable sources, air bag inflation systems and explosives. Perchlorate can be taken into the thyroid glands and interfere with iodide uptake. The determination of perchlorate in agricultural products is important due to its potential health impact on humans. The objective of this study was to determine the perchlorate concentrations in the samples of various agricultural products and soils. METHODS AND RESULTS: In this study, samples of cereal(Rice, Barley, Corn, Bean), vegetable(Spinach, Lettuce, Sesame, Chives, Chili, Pumpkin, Tomato), fruit(Apple, Pear, Tangerine, Grape) were analyzed for perchlorate contents. Perchlorate concentrations were analyzed by liquid chromatography-tandem mass spectrometry. The results showed that agricultural products respectively contained perchlorate concentrations in the range of : cereals N.D.~$7.46{\mu}g/kg$, vegetables $0.52{\sim}23.06{\mu}g/kg$, fruits $0.19{\sim}2.66{\mu}g/kg$. Bioconcentration factor was in the order of : vegetables > cereals > fruits. Bioconcentration factor was highest follwed by Sesame 37.88, Corn 21.51, Spinach 10.57, Tangerine 4.39, Chives 2.89 and Lettuce 1.90. The recoveries of perchlorate from spiked agricultural products and soils ranged from 87.72~111.26% and 102.09~111.23%. CONCLUSION(S): The health risk assessment results obtained in this study are lower than the RfD(Reference Dose, 0.0007 mg/kg/body weight/day) value as suggested by the Integrated Risk Information System(US IRIS). Our results indicate that, people currently exposed to perchlorate from agricultural products consumption are considered as safe.

Soil Chemical Properties of Major Vegetable Producing Open Fields (주요(主要) 노지채소(露地菜蔬) 주산지(主産地) 토양(土壤)의 화학적(化學的) 특성(特性))

  • Hwang, Ki-Sung;Lee, Sung-Jae;Kwack, Yong-Ho;Kim, Ki-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.2
    • /
    • pp.146-151
    • /
    • 1997
  • To get the basic information for the establishment of the optimum levels of upland soil fertility and fertilizer application, two hundred soil samples were collected from the major vegetable cultivation areas such as Chinese cabbage, reddish, garlic, onion, red pepper, watermelon and potato fields. The soil samples were analyzed for the soil chemical properties and micro elements. Soil pH, organic matter and magnesium contents were lower than the standard level for upland soil improvement, while the phosphate and potassium contents were higher than the standard levels. The organic matter and nitrogen contents were increased in the potato field soils, the available phosphate contents were increased in the red pepper field soils and the exchangeable potassium contents were increased in reddish and red pepper field soils, to compared with the past deta. The contents of micro elements were ranged in 14~282 for Fe, 13~98 for Mn, 0.5~2.8 for Cu and 0.6~5.0 mg/kg for Zn respectively, and they were in order of Fe>Mn>Zn>Cu.

  • PDF

Growth and Yield Response of Chinese Cabbage and Radish on Application of Potassium Chloride Fertilizer (염화칼리 시용에 따른 배추와 무의 생육과 수량)

  • Song, Yo-Sung;Kwak, Han-Kang;Yeon, Byeong-Yeol;Yoon, Jung-Hui;Jun, Hee-Joong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.6
    • /
    • pp.399-406
    • /
    • 2003
  • The application of potassium above the optimum level may cause the inhibition of plant growth, fertilizer loss, and environmental pollution. Therefore, application rate of K fertilizer should be recommended on the basis of soil test. In order to determine critical K content in soils causing growth inhibition of vegetables, $1m^2-pot$ experiments with Chinese cabbage and radish were accomplished with various K-application rates. The threshold concentrations of exchangeable potassium causing the inhibition of plant growth were $0.96cmol_c\;kg^{-1}$ for Chinese cabbage in spring, and $1.28cmol_c\;kg^{-1}$ for radish in autumn. Above those concentration levels, the yields of them were decreased with the increase of potassium levels in soils. Germination rate of Chinese cabbage in spring decreased with increase of the electrical conductivity (EC) of soils due to application of potassium fertilizer. In the harvesting stage, the potassium contents of plant were increased with the increase of K application rate while plant uptake of nutrients was decreased at the K adjustment level of over $2.0cmol_c\;kg^{-1}$.

Studies on the Characteristics of Phosphorus in the Upland Soil -IV. Distribution Percentage of Inorganic Phosphorus on Different Levels of Soil Chemical Properties (경작지(耕作地) 전토양(田土壤)의 인산특성(燐酸特性)에 관(關)한 연구(硏究) -IV. 토양특성별(土壤特性別) 분획인(分劃燐)의 분포(分布))

  • Shin, Cheol-Woo;Kim, Jeong-Je;Ryu, In-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.1
    • /
    • pp.15-20
    • /
    • 1990
  • A laboratory experiment was conducted to investigate the relationship between the composition of phosphorus forms and soil chemical properties. The soil samples were collected from the farms of the 149 locations where vegetables were intensively cultivated with heavy application of phosphorus. The composition percentages of Ca-P and Saloid-P to the total phosphorus were increased as increasing soil pH while those of Fe-P and Al-P were decreased, The composition percentage of Fe-P were increased up to pH 5.0-6.0 and decreased as increasing pH above 6.0. respectively. The pH dependency of Al-P and Fe-P composition percentage was more remarkable for the soils with high available phosphorus (>500ppm) than with low available phosphorus (<500ppm). Composition percentages were in order of Fe-P>Al-P>Ca-P>Saloid-P for the soils with available phosphorus below 500ppm, while those were in order of Al-P>Fe-P>Ca-P>Saloid-P for the soils with high available phosphorus above 1,000ppm. Composition percentages of Al-P and Fe-P were increased as increasing active Al content, and Fe-P was increased as increasing of active Fe and P sorbed but saloid-P, Al-P and Ca-P were decreased.

  • PDF

Recommendation of Optimum Amount of Fertilizer Nitrogen Based on Soil Organic Matter for Chinese Cabbage and Cabbage in Volcanic Ash Soils of Cheju Island (제주도 화산회토양의 배추와 양배추에 대한 질소의 시비추천식 설정)

  • Song, Yo-Sung;Kwak, Han-Kang;Yeon, Byeong-Yeal;Lee, Choon-Soo;Yoon, Jung-Hui;Moon, Doo-Young;Lee, Shin-Chan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.2
    • /
    • pp.105-111
    • /
    • 2002
  • To find out the optimum nitrogen fertilization levels for the leafy vegetables in volcanic ash soils of Cheju island, fertilization effects on chinese cabbage chinese and cabbage were investigated through pot and field experiments. In pot experiment conducted with two volcanic ash soils of Cheju island, optimum rates of nitrogen fertilizer was ranged from 294 to $331kg\;ha^{-1}$ for chinese cabbage. At field experiment with one volcanic soil, the optimum N fertilizer was $331kg\;ha^{-1}$. On the basis of soil organic matters, fertilizer recommendation formula for cabbage, could be established by using 1.03 of comparison factors (F) compared with chinese cabbage : y=344.54-0.285x for chines cabbage, y= 354.88-0.294x for cabbage, where y is the recommendation amount of nitrogen fertilizer with x g $kg^{-1}$ of organic matter in soil. Actual optimum rate of nitrogen fertilizer for chinese cabbage under field condition was much more similar to the value caluculated by the revised nitrogen recommendation formula than the amount of nitrogen fertilizer recommended by the current formula in volcanic ash soil.

Studies on Chemical Proprties of Soils under the Plastic House Cultivation of Vegetables (비닐 하우스 토양(土壤)의 화학적(化學的) 특성(特性)에 관(關)한 연구(硏究))

  • Lee, Yong-Hwan;Shin, Yong-Kwang;Hwang, Kwang-Nam;Rhee, Gyeong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.4
    • /
    • pp.236-240
    • /
    • 1993
  • This study was conducted to investigate the chemical properties of soils under plastic house cultivation in northern Gyeonggi province(Yangju gun and Paju gun) in 1992. The results are summarized as follows: 1. Distributions of soil texture were in the order of sand loam(65%), silt loam(25%) and loam(5%). 2. Content of soil nutrient varied with difference with soil management practices and years of cultivation and chemical properties of soils. 3. Soil pH, Ca/Mg ratio and Mg/K ratio tended to be low, while other parameters high. 4. The average application rates of poultry dropping, cow dung and piggery waste were 6.0, 4.5, and 2.0ton/10a, respectively.

  • PDF

Screening of Adsorbent to Reduce Salt Concentration in the Plastic Film House Soil under Continuous Vegetable Cultivation (시설채소재배지의 토양특성과 흡착제 종류별 염류경감 효과)

  • Ok, Yong-Sik;Yoo, Kyung-Yoal;Kim, Yoo-Bum;Chung, Doug-Young;Park, Yong-Ha;Yang, Jae-E.
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.3
    • /
    • pp.253-260
    • /
    • 2005
  • Salt accumulation in the plastic film house soils under continuous cultivation condition causes problems such as salt damages to plants, nitrate accumulation in vegetables, groundwater contamination, etc. due to excess application of fertilizers. Objective of this research was to find an optimum adsorbent to reduce salt concentration in the soil solution of plastic film house soils, where crop injuries have been observed due to the salt accumulation. The soils were significantly high in available P $(1,431{\sim}6,516mg\;kg^{-1}),\;NO_3-N\;(117.60{\sim}395.73mg\;kg^{-1})$, exchangeable Ca $(4.06{\sim}11.07\;cmol_c\;kg^{-1})$ and Mg $(2.59{\sim}18.76\;cmol_c\;kg^{-1})$, as compared to those of the average upland soils in Korea. Soils were treated with each of adsorbent such as ion-exchange resin, zeolite, rice bran, etc. at 2% level and prepared into saturated-paste samples. After equilibrium, soil solution was vacuum-extracted from the soil and measured for changes of the pH, EC, and concentrations of $Ca^{2+},\;Mg^{2+},\;K^+,\;Na^+,\;{NH_4}^+,\;{PO_4}^{3-}\;and\;{NO_3}^-$. Rice bran effectively removed ${PO_4}^{3-}\;and\;{NO_3}^-$ in the soil solution up to 100%. Efficiency was decreased in the orders of rice bran > ion-exchange resin > zeolite. Removal efficiencies of zeolite and ion-exchange resin for $Ca^{2+}$ were ranged from 1 to 65% and from 7 to 61%, respectively. Ion-exchange resin was also effective for removing $Mg^{2+},\;K^+,\;Na^+,\;and\;{NH_4}^+$. Overall results demonstrated that rice bran and ion-exchange resin could be applicable for salt accumulated soil to remove the respective anion and cation.

Effect of Chicken Manure Compost Application on the Growth of Vegetables and Nutrients Utilization in Upland Soil (계분퇴비 시용이 채소류 생육과 양분이용율에 미치는 영향)

  • Kim, Jong-Gu;Lee, Kyeong-Bo;Lee, Deog-Bae;Lee, Sang-Bok;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.177-182
    • /
    • 1998
  • To evaluate the effect of chicken manure compost(CMC) application on nutrient utilization and reduction of N fertilizer application for vegetables such of cabbage, reddish, and eggplant, four different application rates of CMC such as 0, 10, 30. $50Mg\;ha^{-1}$ were amended with three different rates of chemical fertilizer of 0, 15, $300kg\;ha^{-1}$. The efficiency of nutrient utilization on CMC were in the order of N, P, K. For each respective nutrient utilization by cabbage, reddish, and eggplant, N were 29%, 20%, 14%; P were 10%,<1%, and <1% ; K were 5%, 22%, 32%. The greater application of CMC, the less the efficiency, while the efficiency of P was increased with increasing application of CMC. The highest efficiency of nutrient utilization was found in $10Mg\;ha^{-1}$. The amounts of reduction of N fertilizer application in soils amended with $10Mg\;ha^{-1}$ of CMC with respect to maintain the normal production of each vegetables observed in this experiment were as follows: $25kg\;ha^{-1}$ and $15kg\;ha^{-1}$ less, and $13kg\;ha^{-1}$ more than the recommended rate for cabbage, eggplant, and reddish, respectively. For elution of available of N by the application of CMC, there was a gradual increase up to 30 day, then gradually decreased. However, there was increase of N eluted in the application of $50Mg\;ha^{-1}$. For soil chemical properties, pH, T-N, OM, and $P_2O_5$ were increased with increased application of CMC, as well as did cations such as K, Ca, and Mg. Yield and glucose of cabbage was significantly increased at the application of $30Mg\;ha^{-1}$ CMC, but content of nitrate in eggplant and raddish was highly increased with increasing application of N fertilizer and CMC. By the way, the yields of cabbage, reddish, and eggplant were slightly decreased with CMC application greater than $50Mg\;ha^{-1}$.

  • PDF

Comparison of Farm Based Fertilizer Usage in 1992 and 1999 (1992년과 1999년의 농가 비료이용 실태 변화 비교)

  • Kim, Seok-Cheol;Park, Yang-Ho;Lee, Youn;Lee, Ju-Young;Kim, Chung-Su;Kim, Pil-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.5
    • /
    • pp.344-355
    • /
    • 2003
  • Korea is one of those countries that have very high usage rates of chemical fertilizers per unit area of cropland. To reduce the fertilizer application rate, a variety of agricultural polices has been introduced since the 1990s. In this study, fertilizer usage was surveyed on the farm base throughout the country in 1999, and the data were compared with those of 1992. Organic fertilizer application rates were decreased in most cereal crops with time pass, but maintained similar levels in vegetables grown in plastic-film houses and in upland soils. Chemical fertilizer application rates were decreased in most of the cereal crops and vegetables surveyed; however, this reduction was concentrated in phosphate and potassium usage, but not in nitrogen. In spite of this decrease, the fertilizer application levels to most crops were maintained at levels much higher than recommended. In the nutrient balance, which was calculated from the difference between input (chemical and organic fertilizers) and output (agricultural products), the nitrogen nutrient surplus did not decrease; however, phosphate and potassium decreased by 21% and 13%, respectively, in 1999 compared with 1992. To reduce fertilizer utilization and to conserve environment, further reduction of fertilizer application is essential.

Factors Controlling the Losses of Urea through Ammonia Volatilization (암모니아 휘산에 의한 요소비료의 손실에 미치는 요인)

  • Kim, Su-Jung;Yang, Jae E.;Cho, Byong-Ok;Kim, Jeong-Je;Shin, Young-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.77-82
    • /
    • 2007
  • Volatilization of ammonia from N fertilizer is the major mechanism of N losses that occur naturally in all soils and is influenced by numerous soils, environmental and N fertilizer management factors. Vegetables are often damaged by $NH_3$ gas volatilized from the high rates of N fertilizer. We determined the rate of $NH_3$ volatilization from urea applied to surface of the alluvial soil (coarse silty, mixed, mesic family of Dystric Fluventic Eutrochrepts, Ihyeon series) as affected by fertilizer management factors such as rate of urea application, irrigation schedule and temperature. The $NH_3$ volatilization was triggered about 3 d after urea application and reached at maximum level in general within 15 days. Cumulative amounts of 3.0, 4.4, and 8.0 kg of $NH_3$ N after 17 d were volatilized at application rates of 200, 400, and $600kg\;N\;ha^{-1}$, respectively, which were equivalent to the N losses of 15.0, 10.9, and 13.0% of N applied. Masses of N volatilization were 5, 21, 75 and $87kg\;NH_3\;N\;ha^{-1}$ at 5, 8, 22, and 28, respectively. Total amounts of 21.3, 21.2, and $16.6kg\;N\;ha^{-1}$ were volatilized at control, 5 and 10 mm water irrigation before fertilization, respectively. However, those at 5 mm irrigation after fertilization were only $10.44kg\;N\;ha^{-1}$. Results showed that urea loss can be avoided by incorporating with the recommended level, applying when temperatures are low or irrigating immediately to carry the urea into soil.