DOI QR코드

DOI QR Code

Screening of Adsorbent to Reduce Salt Concentration in the Plastic Film House Soil under Continuous Vegetable Cultivation

시설채소재배지의 토양특성과 흡착제 종류별 염류경감 효과

  • Ok, Yong-Sik (Division of Biological Environment, Kangwon National University) ;
  • Yoo, Kyung-Yoal (Division of Biological Environment, Kangwon National University) ;
  • Kim, Yoo-Bum (Division of Biological Environment, Kangwon National University) ;
  • Chung, Doug-Young (Department of Bioenvironmental Chemistry, Chungnam National University) ;
  • Park, Yong-Ha (Korea Environment Institute) ;
  • Yang, Jae-E. (Division of Biological Environment, Kangwon National University)
  • 옥용식 (강원대학교 자원생물환경학과) ;
  • 유경열 (강원대학교 자원생물환경학과) ;
  • 김유범 (강원대학교 자원생물환경학과) ;
  • 정덕영 (충남대학교 생물환경화학과) ;
  • 박용하 (한국환경정책.평가연구원) ;
  • 양재의 (강원대학교 자원생물환경학과)
  • Published : 2005.09.30

Abstract

Salt accumulation in the plastic film house soils under continuous cultivation condition causes problems such as salt damages to plants, nitrate accumulation in vegetables, groundwater contamination, etc. due to excess application of fertilizers. Objective of this research was to find an optimum adsorbent to reduce salt concentration in the soil solution of plastic film house soils, where crop injuries have been observed due to the salt accumulation. The soils were significantly high in available P $(1,431{\sim}6,516mg\;kg^{-1}),\;NO_3-N\;(117.60{\sim}395.73mg\;kg^{-1})$, exchangeable Ca $(4.06{\sim}11.07\;cmol_c\;kg^{-1})$ and Mg $(2.59{\sim}18.76\;cmol_c\;kg^{-1})$, as compared to those of the average upland soils in Korea. Soils were treated with each of adsorbent such as ion-exchange resin, zeolite, rice bran, etc. at 2% level and prepared into saturated-paste samples. After equilibrium, soil solution was vacuum-extracted from the soil and measured for changes of the pH, EC, and concentrations of $Ca^{2+},\;Mg^{2+},\;K^+,\;Na^+,\;{NH_4}^+,\;{PO_4}^{3-}\;and\;{NO_3}^-$. Rice bran effectively removed ${PO_4}^{3-}\;and\;{NO_3}^-$ in the soil solution up to 100%. Efficiency was decreased in the orders of rice bran > ion-exchange resin > zeolite. Removal efficiencies of zeolite and ion-exchange resin for $Ca^{2+}$ were ranged from 1 to 65% and from 7 to 61%, respectively. Ion-exchange resin was also effective for removing $Mg^{2+},\;K^+,\;Na^+,\;and\;{NH_4}^+$. Overall results demonstrated that rice bran and ion-exchange resin could be applicable for salt accumulated soil to remove the respective anion and cation.

국내 시설하우스의 경우 화학비료를 비롯한 각종 농자재의 투입으로 인하여 비료 성분이 집적되었고 이는 작물의 수분흡수 장해를 유발하여 영양장해와 품질저하를 초래하고 있다. 또한 일부 지역에서는 농작물 가식 부위로의 ${NO_3}^-$ 축적과 질소 및 인의 용탈로 인한 수질 오염이 우려 된다. 본 연구에서는 연작장해가 발생한 시설채소재배지 토양의 물리화학적 특성을 평가하고 염류성분을 흡착 고정화할 수 있는 흡착제를 처리하여 토양용액에 존재하는 염류성분을 경감시킬수 있는 최적의 흡착제를 선별하고자 하였다. 실험에 사용된 토양은 유효인산$(1431{\sim}6516mg\;kg^{-1})$, 질산성 질소$(117.60{\sim}395.73mg\;kg^{-1})$, 치환성 칼슘$(4.06{\sim}11.07\;cmol_c\;kg^{-1})$ 및 마그네슘$(2.59{\sim}18.76\;cmol_c\;kg^{-1})$ 성분이 기준치를 과도하게 초과하여 염류장해를 유발하는 요인으로 작용하였다. 염류집적 토양에 대한 미강처리는 토양용액 내의 인산과 질산이온을 $93{\sim}100%$ 감소시켰으며 처리효율은 미강 > 혼합이온교환수지 > 분말형 제올라이트 순으로 나타났다. 미강을 제외한 모든 처리구는 pH $7.98{\sim}8.11$의 범위를 나타내었으며 미강 처리구에서는 토양의 pH가 6.61로 감소되었다. 미강 처리구의 경우 토양의 종류에 따른 차이는 있었으나 음이온에 대한 흡착능력이 매우 뛰어남을 알 수 있었다. 토양용액 중의 칼슘 이온에 대한 제거효율은 제올라이트 $1{\sim}65%$, 혼합이온교환수지 $7{\sim}61%$의 범위를 나타냈으며 미강의 경우 일부 토양에서는 토양용액 중의 칼슘 농도를 증가시키는 것으로 나타났으며 양이온교환수지의 경우 암모니움 이온과 칼륨 및 나트륨 이온에 대해서도 가장 뛰어난 흡착특성을 나타내었다. 이상의 결과를 통하여 양이온의 경우에는 혼합이온 교환수지 처리가 그리고 음이온의 경우 미강 처리가 토양용액 중의 염류성분의 흡착 제거에 뛰어난 효과가 있는 것으로 평가되었으며 경제적인 측면에서도 적용 가능할 것으로 판단되었다.

Keywords

References

  1. Kim, J. H, Lee, J. S., Kim, W. I., Jung, G R, Yun, S. G, Jung, Y. T. and Kwun, S. K (2002) Groundwater and soil environment of plastic film house fields around central part of Korea, Korean J. Environ. Agric. 21(2), 109-116 https://doi.org/10.5338/KJEA.2002.21.2.109
  2. Park, C. J., Yang, J. E., Kim, K. H., Yoo, K. Y. and Ok, Y. S. (2005) Recycling of hydroponic waste solution for red pepper (Cassicum annum L.) growth, Korean J. Environ. Agric. 24(1), 24-28 https://doi.org/10.5338/KJEA.2005.24.1.024
  3. Kim, D. S. (2004) Effects of the perforated underdrainage pipe installment on the salt removal in the plastic film house soil, MS Thesis, Kangwon National University, Chuncheon, Korea, p.1-28
  4. Yang, J. E., Park, C. J., Ok, Y. S., Yoo, K. Y. and Kim, K. H. (2005) Fate of nitrogen and phosphorous in hydroponic waste solution applied to the upland soils, Korean J. Environ. Agric. 24(2), 132-138 https://doi.org/10.5338/KJEA.2005.24.2.132
  5. Kwak, H. K., Seong, K. S., Lee, N. J., Lee, S. B., Han, M. S. and Roh, K. A. (2003) Changes in chemical properties and fauna of plastic film house soil by application of chemical fertilizer and composted pig manure, Korean J. Soil Sci. Fert. 36(5), 304-310
  6. Ok, Y. S., Lim, S. and Kim, J. G (2002) Electrochemical properties of soils: principles and applications, Life Sci. Nat. Resour. Res. 10, 69-84
  7. Cho, S. H. (2000) Soil testing for available phosphorous and electrical conductivity of saturated extract of the green house soils, MS Thesis, Kangwon National University, Chuncheon, Korea, p.l-44
  8. Mansel, R. S., Fiskell, J. G. A., Calvert, D. V. and Rogers, J. S. (1986) Distribution of labelled nitrogen in the profile of a fertilized sandy soil. Soil Sci. 141, 120-126 https://doi.org/10.1097/00010694-198602000-00004
  9. Pierzynski, G. M., Sims, J. T. and Vance, J. F. (2000) Soil and environmental quality, CRC Press, Florida, USA, p.1-418
  10. McLaren, R. G. and Cameron, K. C. (1996) Soil science: sustainable production and environmental protection, Oxford University Press, Auckland, New Zealand, p.178-285
  11. Yang, J. E., Skogley, E. O., Georgitis, S. J., Schaff, B. E. and Ferguson, A. H. (1991) Phytoavailability soil test: development and verification of theory, Soil Sci. Soc. Am. J. 55, 1358-1365 https://doi.org/10.2136/sssaj1991.03615995005500050027x
  12. Yang, J. E. and Skogley, E. O. (1992) Diffusion kinetics of multinutrient accumulation by mixed-bed ion-exchange resin, Soil Sci. Soc. Am. J. 56,408-414 https://doi.org/10.2136/sssaj1992.03615995005600020011x
  13. Yang, J. E., Park, C. J., Kim, D. K, Ok, Y. S., Ryu, K. R., Lee, J. Y. and Zhang, Y. S. (2004) Development of mixed-bed ion-exchange resin capsule for water quality monitoring, J. Korean Soc. Appl. BioI. Chem. 47(3), 344-350
  14. NlAST (1988) Methods of soil chemical analysis, National Institute of Agricultural Science and Technology, RDA, Suwon, Korea
  15. Choi, W. Y. (1997) Development of absorbent-microbe mixture for desalination of green house soils, MOA, Gwacheon, Korea, p.1-105
  16. Ok, Y. S., Yang, J. E., Park, Y. H., Jung, Y. S5., Yoo, K. Y. and Park, C. S. (2005) Framework on soil quality indicator selection and assessment for the sustainable soil management, Environ. Policy Res. 4(1), 71-88
  17. Tanji, J. (1990) Agricultural salinity assessment and management, ASCE, p.487
  18. Yoon, J. H., Hwang, K. S. and Park, P. K. (1992) Comparison of salinity measurement method of soil solution, Research Report, NlAST, p.196-199
  19. Jung, Y. S., Joo, J. H., Hong, S. D. Lee, I. B. and Ro, H. M. (2001) Discussion on dilution factor for electrical conductivity measured by saturation-paste and 1 : 5 soil to water extract, and CEC of Korean soils, Korean J. Soil Sci. Fert. 34(1), 71-75
  20. Yoon, Y., Ok, Y. S., Kim, D. Y. and Kim, J. G. (2004) Agricultural recycling of the by-product concentrate of livestock wastewater treatment plant processes with VSEP RO and bio-ceramic SBR, Water Sci. Technol. 49(5-6), 405-412
  21. Ok, Y. S., Lee, H, Jung, J., Song, H, Chung, N., Lim, S. and Kim, J. G. (2004) Chemical characterization and bioavailability of cadmium in artificially and naturally contaminated soils, Agric. Chem. Biotechnol. 47(3), 143-146
  22. Lee, W. Y., Yang, J. E., Park, C. J., Zhang, Y. S. and Ok, Y. S. (2004) Relationship between chemical properties of forest soil solutions and element concentrations in needles of Pinus thunbergii in industrial complexes, Korean J. Soil Sci. Fert. 37(5), 322-328
  23. Lim, S. K., Chung, C. Y., Ok, Y. S. and Kim, J. G. (2002) Competitive adsorption of Cd and Cu on surface of humic acid extracted from peat, Korean J. Soil Sci. Fert. 35(6), 344-351
  24. Ok, Y. S., Choi, Y. S., Lee, S. E., Lim, S. K., Chung, N. H. and Kim, J. G. (2001) Effects of soil components and index ion on the surface charge characteristics of some Korean arable soils, Korean J. Soil Sci. Fert. 34(4), 237-244
  25. Bernal, M. P. and Lopez-Real (1993) Natural zeolites and sepiolite as ammonium and ammonia adsorbent materials, Bioresource Technol. 43, 27-33 https://doi.org/10.1016/0960-8524(93)90078-P
  26. Lee, D. H. and Lee, M. G. (2002) Ammonia nitrogen removal by cation exchange resin, J. Environ. Sci. 11(3), 263-269 https://doi.org/10.5322/JES.2002.11.3.263
  27. Song, Y. S., Kwak, H. K., Huh, B. L. and Lee, S.E. (1996) Use efficiency of nitrate nitrogen accumulated in plastic film house soils under continuous vegetable cultivation, Korean J. Soil Sci. Fert. 29(4), 347-352

Cited by

  1. Evaluation of 2- and 3-stage combinations of vertical and horizontal flow constructed wetlands for treating greenhouse wastewater vol.32, pp.2, 2008, https://doi.org/10.1016/j.ecoleng.2007.10.007
  2. Cost Analysis of Electrokinetic Process for Desalination of Saline Agricultural Land vol.17, pp.4, 2012, https://doi.org/10.7857/JSGE.2012.17.4.091
  3. Phytostabilization of salt accumulated soil using plant and biofertilizers: Field application vol.124, 2017, https://doi.org/10.1016/j.ibiod.2017.05.001
  4. Effect of Zeolite Application on Growth and Yield of Chinese Cabbage and Chemical Properties of Soil Under Greenhouse Cultivation vol.48, pp.3, 2015, https://doi.org/10.7745/KJSSF.2015.48.3.218
  5. Electrokinetic Restoration of Saline Agricultural Land vol.17, pp.4, 2012, https://doi.org/10.7857/JSGE.2012.17.4.019
  6. Pulse-enhanced electrokinetic restoration of sulfate-containing saline greenhouse soil vol.86, 2012, https://doi.org/10.1016/j.electacta.2012.05.128