Factors Controlling the Losses of Urea through Ammonia Volatilization

암모니아 휘산에 의한 요소비료의 손실에 미치는 요인

  • Kim, Su-Jung (Division of Biological Environment, Kangwon National University) ;
  • Yang, Jae E. (Division of Biological Environment, Kangwon National University) ;
  • Cho, Byong-Ok (Division of Biological Environment, Kangwon National University) ;
  • Kim, Jeong-Je (Division of Biological Environment, Kangwon National University) ;
  • Shin, Young-Oh (Division of Biological Sciences, Yonsei University)
  • Received : 2007.01.23
  • Accepted : 2007.02.16
  • Published : 2007.02.28

Abstract

Volatilization of ammonia from N fertilizer is the major mechanism of N losses that occur naturally in all soils and is influenced by numerous soils, environmental and N fertilizer management factors. Vegetables are often damaged by $NH_3$ gas volatilized from the high rates of N fertilizer. We determined the rate of $NH_3$ volatilization from urea applied to surface of the alluvial soil (coarse silty, mixed, mesic family of Dystric Fluventic Eutrochrepts, Ihyeon series) as affected by fertilizer management factors such as rate of urea application, irrigation schedule and temperature. The $NH_3$ volatilization was triggered about 3 d after urea application and reached at maximum level in general within 15 days. Cumulative amounts of 3.0, 4.4, and 8.0 kg of $NH_3$ N after 17 d were volatilized at application rates of 200, 400, and $600kg\;N\;ha^{-1}$, respectively, which were equivalent to the N losses of 15.0, 10.9, and 13.0% of N applied. Masses of N volatilization were 5, 21, 75 and $87kg\;NH_3\;N\;ha^{-1}$ at 5, 8, 22, and 28, respectively. Total amounts of 21.3, 21.2, and $16.6kg\;N\;ha^{-1}$ were volatilized at control, 5 and 10 mm water irrigation before fertilization, respectively. However, those at 5 mm irrigation after fertilization were only $10.44kg\;N\;ha^{-1}$. Results showed that urea loss can be avoided by incorporating with the recommended level, applying when temperatures are low or irrigating immediately to carry the urea into soil.

질소비료로부터 암모니아의 휘산은 자연적으로 존재하는 모든 토양에서 일어나는 질소 손실의 주된 기작이다. 암모니아 휘산은 다양한 토양과 환경의 조건 및 비료관리 방안에 의해 영향을 받는다. 질소비료 의존도가 높은 채소들도 휘산된 암모니아 가스에 의해 피해를 받는 사례가 종종 보고되고 있다. 본 연구에서는 표토에 시용된 요소비료로부터 암모니아 휘산량을 측정하였고, 이에 미치는 요소비료 시용량, 관개시기, 및 온도 등의 비료관리요인들의 영향을 조사했다. 암모니아 휘산은 요소를 시용한 뒤 약 3일 후에 시작되었으며, 약 2주 후에 최대에 도달하였다. 17일 후, 휘산된 암모니아태 질소의 양은 200, 400, $600kg\;N\;ha^{-1}$ 의 시용량에서 각각 3.0, 4.4, 그리고 8.0 kg 이었다. 이들 휘산량은 시용된 질소가 15.0, 10.9, 및 13.0% 가 손실된 것과 상응한다. 온도가 5, 8, 22, $28^{\circ}C$ 일때 휘산된 질소의 양은 각각 5, 21, 75, $87kg\;N\;ha^{-1}$ 이였다. 요소비료를 시용한 뒤 0, 5, 10 mm의 물을 관개한 경우, 휘산된 질소의 양은 각각 21.3, 21.2, $16.6kg\;N\;ha^{-1}$ 이었다. 한편, 요소를 시용한 후 5 mm를 관수한 경우의 질소 휘산량은 $10.44kg\;N\;ha^{-1}$ 로 감소하였다. 그러므로 요소비료를 권장량을 표토와 혼합, 온도가 낮을 때 그리고 요소비료를 시용후 즉시 관개하는 방안이 암모니아 휘산에 의한 질소 손실을 최소화 하는 비료관리 방안이었다.

Keywords

References

  1. Beyrouty, C. A., L. E. Sommers, and D. W. Nelson. 1988. Ammonia volatilization from surface applied urea as affected by several phosphoroamide compounds. Soil Sci. Soc. Am. J. 52:1173-1178 https://doi.org/10.2136/sssaj1988.03615995005200040051x
  2. Brady, N. C. and R. R. Weil. 2002. The nature and properties of soils (13th ed). p. 272 315, 543-591. Prentice Hall. Upper Saddle River, NJ
  3. Cameron, K. C. 1992. Nitrogen in Soil. p. 307-317. In R. W. Fairbridge (ed.) Encyclopedia of Earth System Sciences, vol 3. Academic Press Inc. London, Great Britain
  4. Cho, B.O. 1999. Characterization of soil fertility and management practices of alpine soils under vegetable cultivations. Ph.D. Dissertation, Kangwon National University, Chuncheon, Korea
  5. Ferguson, R. B., D. E. Kissel, J. K. Koelliker, and W. Basel. 1984. Ammonia volatilization from surface applied urea: Effect of hydrogen ion buffering capacity. Soil Sci. Soc. America J. 38:578-582
  6. Freedman, B. 1992. Acid Rain. p. 7. In M. Yelles (ed.) Encyclopedia of Earth System Sciences. vol 1. Academic Press Inc. London, Great Britain
  7. Haynes, R. J. 1992. Nitrification. p. 287-317. In R. W. Fairbridge (ed.) Encyclopedia of Earth System Sciences, vol 3. Academic Press Inc. London, Great Britain
  8. Havlin, J. L., J. D. Beaton, S. L. Tisdale, and W. L. Nelson. 2005. Soil fertility and fertilizers: an introduction to nutrient management (7th ed). p. 97-159. Pearson Prentice Hall. Upper Saddle River, NJ, USA
  9. Khalil, M. I., U. Schmidhalter, and R. Gutser. 2005. Urea super granules in a cambisol: N transformations, $N_{2}O$ and $NH_{3}$ emissions at two soil water regimes. p. 1122-1123. In C. J. Li et al. (ed.), Plant nutrition for food security, human health and environmental protection. Tsinghua University Press, China
  10. Khalil, M. I., U. Schmidhalter, and R. Gutser. 2006. $N_{2}O$, $NH_{3}$, and $NO_{x}$ emissions as a function of urea granule size and soil type under aerobic conditions. Water Air Soil Poll. 175:127-148 https://doi.org/10.1007/s11270-006-9117-y
  11. Jung, Y. S., S. K. Ha, B. O Cho, and H. J. Lee. 1996. Use of phosphate coated urea to decrease ammonia volatilization loss from direct seeded rice field at early stage. Korean J. Soil Sci. Fert. 29:8-14
  12. Mengel, K., and E. A. Kirkby. 2001. Principles of plant nutrition (5th ed). p. 397 434. Kluwer Academic Publishers. Dordrecht, The Netherlands
  13. NIAST. 2000a. Taxonomical classification of Korean soils. p. 394-395. Rural Development Administration. Suwon, Korea
  14. NIAST. 2000b. Methods of analyses for soils and plants. p. 107-113. Rural Development Administration. Suwon, Korea
  15. PPI (Potash and Phosphate Institute). 2003. Soil fertility manual. Chapter 3. Nitrogen, Norcross, GA, USA
  16. Ro, H. M., W. J. Choi, and S. I. Yun. 2003. Uptake and recovery of urea-15N blended with different rates of composted manure. Korean J. Soil Sci. Fert. 36:376-383
  17. Rodriguez, S. B., A. Alonso-Gaite, and J. Alvarez-Benedi. 2005. Characterization of nitrogen transformations, sorption and volatilization processes in urea fertilized soils. Vadose Zone J. 4:329-336 https://doi.org/10.2136/vzj2004.0102
  18. Sommer, S. G., J. K. Scjoerring, and O. T. Denmead. 2004. Ammonia emission from mineral fertilizers and fertilized crops. Adv. Agron. 82:557-622 https://doi.org/10.1016/S0065-2113(03)82008-4