• Title/Summary/Keyword: SoilLoss

Search Result 1,069, Processing Time 0.026 seconds

A Study on Soil loss in Forest fire area (산불발생지역에서의 토양유실량에 관한 연구)

  • Yang, In-Tae;Park, Jae-Hoon;Chun, Ki-Sun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.2 s.25
    • /
    • pp.11-16
    • /
    • 2003
  • Soil loss by the rains has effect on natural environment. But It is difficult to find out the data that is surveyed in watershed. In this paper, we choose USLE erosion model, which could be connected easily with GSIS and available generally, and extracted factors which is entered model by using GSIS spatial analysis method. Especially, As revised USLE model, It should be applied in watershed and as it calculated soil loss before Idlest fire and behind, it analysed the degree that it have an effect on soil loss. As each analyzed factors and the result of soil loss estimate consist of 22m-pixel size, we could identify soil loss by each pixel and distribution pattern.

  • PDF

Soil Erosion and Sediment Yield Reduction Analysis with Land Use Conversion from Illegal Agricultural Farming to Forest in Jawoon-ri, Kangwon using the SATEEC ArcView GIS System (SATEEC ArcView GIS 시스템을 이용한 홍천군 자운리 유역 무허가경작지의 산림 환원에 따른 토양유실 및 유사저감 분석)

  • Jang, Won-Seok;Park, Youn-Shik;Kim, Jong-Gun;Choi, Joong-Dae;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1300-1304
    • /
    • 2008
  • The fact that soil loss causing to increase muddy water and devastate an ecosystem has been appearing upon a hot social and environmental issues which should be solved. Soil losses are occurring in most agricultural areas with rainfall-induced runoff. It makes hydraulic structure unstable, causing environmental and economical problems because muddy water destroys ecosystem and causes intake water deterioration. One of three severe muddy water source areas in Soyanggang-dam watershed is Jawoon-ri region, located in Hongcheon county. In this area, many cash-crops are planted at illegally cultivated agricultural fields, which were virgin forest areas. The purpose of this study is to estimate soil loss with current land uses (including illegal cash-crop cultivation) and soil loss reduction with land use conversion from illegal cultivation back to forest. In this study, the Sediment Assessment Tool for Effective Erosion Control (SATEEC) ArcView GIS system was utilized to assess soil erosion. If the illegally cultivated agricultural areas are converted back to forest, it is expected to 17.42% reduction in soil loss. At the Jawoon-ri region, illegally cultivated agricultural areas located at over 30% and 15% slopes take 47.48 ha (30.83%) and 103.64 ha (67.29%) of illegally cultivated agricultural fields respectively. If all illegally cultivated agricultural fields are converted back to forest, it is expected that 17.41% of soil erosion and sediment reduction, 10.86% reduction with forest conversion from 30% sloping illegally agricultural fields, and 16.15% reduction with forest conversion from 15% sloping illegally agricultural fields. Therefore, illegally cultivated agricultural fields located at these sloping areas need to be first converted back to forest to maximize reductions in soil loss reduction and muddy water outflow from the Jawoon-ri regions.

  • PDF

Effects of Surface Compaction Treatment on Soil Loss from Disturbed Bare Slopes under Simulated Rainfalls (인공강우 시 나지교란사면 토사유출에 미치는 다짐처리의 영향)

  • Park, Sang Deog;Shin, Seung Sook;Kim, Seon Jeong;Choi, Byoungkoo
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.5
    • /
    • pp.559-568
    • /
    • 2013
  • Surface compaction significantly impacts runoff and soil erosion under rainfall since it leads to changes of soil physical characteristics such as increase of bulk density and shear stress, change of microporosity, and decrease of hydraulic conductivity. This study addressed surface compaction effects on runoff and soil loss from bare and disturbed soils that are commonly distributed on construction sites. Thirty-six rainfall simulations from three replicates of each involving rainfall intensities (68.5 mm/hr, 95.6 mm/hr) and plot gradients ($5^{\circ}$, $12.5^{\circ}$, $20^{\circ}$) were conducted to measure runoff and soil loss for two different soil surface treatments (compacted surface, non-compacted surface). Compacted surface increased significantly soil bulk density and soil strength. However, the effect of surface treatments on runoff changed with rainfall intensity and plot gradient. Rainfall intensity and plot gradient had a positive effect on mean soil loss. In addition, the effect of surface treatments on soil loss responded differently with rainfall intensity and plot gradient. Compacted surfaces increased soil loss at gentle slope ($5^{\circ}$) while they decreased soil loss at steep slope ($20^{\circ}$). These results indicate that there exists transitional slope range ($10{\sim}15^{\circ}$) between gentle and steep slope by surface compaction effects on soil loss under disturbed bare soils and simulated rainfalls.

Study on Risk Assesment of Debris Flow using GIS (GIS를 이용한 토석류 위험성 평가에 관한 연구 (소규모 개발지역 중심으로))

  • Chang, In-Soo;Park, Eun-Young;Park, Ki-Bum;Kim, Sungwon
    • Journal of Environmental Science International
    • /
    • v.22 no.2
    • /
    • pp.225-234
    • /
    • 2013
  • The relationship between debris flow and topographical factors is essential for the reliable estimation of soil loss. The objective of this paper is to estimate stability index and soil loss for assessing landsliding risk caused by debris flow. SIMAP and RUSLE are used to estimate stability index and soil loss, respectively. The landsliding risk area estimated by using SIMAP is found to be different from the large land area estimated by RUSLE. It is found that the spatial distribution of soil cover significantly influences landsliding risk area. Results also indicate that stability index and soil loss, estimated by soil cover factor, improve the assessment of landsliding risk.

A Study on Estimation of Loss Rate of Hydraulic Fills (준설토의 유실율 평가방법에 관한 연구)

  • 김홍택;노종구;김석열;강인규;김승욱;박재억
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.185-192
    • /
    • 2000
  • Recently, the hydraulic fill method is commonly used in many reclamation projects due to lack of fill materials. The method of hydraulic fill in reclamation is executed by transporting the mixture of water-soil particles into a reclaimed land through dredging pipes, then the dredged soil particles settle down in the water or flow over an out flow weir with the water. In the present study, practice each three method in order to suggest method of determining the loss rate of the dredged fills. The first sieve and hydrometer analysis were performed with the soil samples obtained before and after dredging and then apply theory of particle breakage, the second compare with the volume of dredged soil between at the dredging area and the target pond and the last compare with weight of dredged soil between before and after dredging at the dredging area and in the target pond for estimating the amount of soil particles residual at the reclaimed area and the loss of soil particles passed through the weir. In addition to compare with the loss ratio between as using Marsal's modified theory of particle breakage and measured weight and volume in the field.

  • PDF

Estimation of Soil Loss into Sap-Gyo Reservoir Watershed using GIS and RUSLE (GIS와 RUSLE 기법을 이용한 삽교호유역의 토사 유실량 산정)

  • Kim, Man-Sik;Jung, Seung-Kwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.4
    • /
    • pp.19-27
    • /
    • 2002
  • Prediction of exact soil loss yield has as important engineering meaning as prediction of exact flow measurement in a stream. The quantity of soil loss in a stream should be considered in planning and management of water resources and water quality such as design and maintenace of hydraulic structures : dams, weirs and seawalls, channel improvement, channel stabilization, flood control, design and operation of reservoirs and design of harbors. In this study, the soil loss of Sap-gyo reservoir watershed is simulated and estimated by RUSLE model which is generally used in the estimation of soil loss. The parameters of RUSLE model are selected and estimated using slope map, landuse map and soil map by GIS. These parameters are applied to RUSLE's estimating program. And soil loss under probability rainfall in different frequencies are estimated by recent 30 years of rainfall data of Sap-gyo reservoir watershed.

  • PDF

The Determination of Resolution for Quantification of Soil Loss in GIS Environment (GIS 기반에서 토양침식의 정량화를 위한 해상도 결정에 관한 연구)

  • 장영률;이근상;조기성
    • Spatial Information Research
    • /
    • v.10 no.2
    • /
    • pp.301-316
    • /
    • 2002
  • Soil Loss by outflow of water or rainfall has caused many environmental problems as declining agricultural productivity, damaging pasture and preventing flow of water. Also, validity pondage of reservoir or dam is decreased by rivers inflow of eroded soil. Revised Universal Soil Loss Equation(RUSLE) is mainly used to presume soil loss amount of basin using GIS. But, because comparison with survey data is difficult, it is no large meaning that estimate calculated soil loss amount as quantitative. This research used unit sediment deposit survey data of Bo-seong basin for quantitative conclusion of soil loss amount that calculate on RUSLE. Through comparison examination with unit sediment yield that calculate on RUSLE and unit sediment deposit survey data, we can estimate resolution far RUSLE Model. As a result, cell size of 150m was estimated by thing which is most suitable.

  • PDF

Nitrogen and Phosphorus Runoff Loss during Summer Season in Sandy Loam Red Pepper Field as Affected by Different Surface Management Practices in Korea

  • Han, Kyung-Hwa;Ro, Hee-Myong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.669-676
    • /
    • 2016
  • A field study was conducted to determine the runoff loss of N and P in small scale of red pepper field plots (10% slope), consisting of three different plots with black polyethylene vinyl mulching (mulching), ridge without mulching (ridge), and flat without ridge and mulching (flat). Composted manure and urea as a basal application were applied at rates of $20MT\;ha^{-1}$ and $93kg\;N\;ha^{-1}$, respectively. Urea at $189kg\;N\;ha^{-1}$ and fused phosphate at $67kg\;P_2O_5\;ha^{-1}$ were additionally applied on June 25 with different fertilization methods, broadcast application in flat plot and hole injection in ridge and mulching plots. Plant uptake of N and P was positively correlated with their respective concentrations in surface soil: mulching > ridge > flat plots. The runoff loss by soil erosion was higher in flat plot than ridge and mulching plot with contour line. Nitrate loss by the runoff water had no significant differences among three surface management practices, but the higher average value in ridge and mulching plots than flat plot. Especially, the flat plot had no phosphate loss during summer season. This is probably due to low labile P content in surface soil of flat plot. In the summation of soil and water loss, flat plot was higher in N and P loss than ridge and mulching plot with contour line. Nevertheless, the nitrate and phosphate loss by runoff water could be more important for non-point source management because the water could meet the river easier than eroded soil because of re-deposition around slope land.

Runoff and soil loss on newly reclaimed upland (야산개발지(野山開發地)의 토양침식(土壤侵蝕)에 관(關)하여)

  • Jung, Yeong Sang;Shin, Jae Sung;Shin, Yong Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.9 no.1
    • /
    • pp.9-16
    • /
    • 1976
  • In order to investigate inherent erodibility of the soil, which is a major factor is soil erosion prediction, a survey on runoff and soil loss of reclaimed upland soil was carried out by using a portable rainulator. The relations of soil loss and some physical properties of the soil were discussed. The soil erodibility factor for Universal soil loss equation was calculated and compared with that of Wischmeier's nomograph. The result were as follows: 1. Total runoff increased for finer textured soil in order of Jeonnam silty clay loam, Songjeong clay loam, Yesan loam, Samgag and Sangju sandy loam. Total soil loss and soil content in runoff were not correspondently related with textural characteristic in order of Jeonnam, Samgag, Sangju, Yesan, and Songjeong. Total runoff, soil loss, and soil content in runoff were increased for steeper slope. 2. Soil loss and soil content in runoff negatively correlated with organic matter content of surface soil, while positively correlated with dispersion ratio, clay ratio, silt content, and significantly correlated with Middleton erosion ratio for coarser textured soil but not correctly related for finer textured soil. 3. The soil erodibilty factor K values for Universal soil loss equation were 0.32 for Jeonnam, 0.22 for Samgag, 0.17 for Sangju, 0.15 for Yesan, and 0.13 for Songjeong respectively. These values were close to those from Wischmeier's nomograph. So, it seems that the nomograph is useful for estimation of soil loss in Korea.

  • PDF

Effects of Minimum Furrow Mulching with Weed Straw and Gravel Furrow Barrier on Soil Conservation at Potato Field in Gangwon Highland (골부초와 자갈대에 의한 고랭지 감자재배지 토양보전 효과)

  • Park, Chol-Soo;Jung, Yeong-Sang;Joo, Jin-Ho;Lee, Won-Jung;Yang, Jae-E.
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.1
    • /
    • pp.29-33
    • /
    • 2005
  • To develop proper soil management practices for reducing soil erosion, experiments were carried out by using lysimeters in Pyeongchang highland, Korea. Lysimeters installed at Hoenggye bad 13% slope, 15 m slope length and 3 m width. Lysimeters with 23% slope, 15 m slope length and 3 m width were also installed at Yongsan. Soil textures in Hoenggye and Yongsan lysimeter plots were silty clay loam and sandy loam, respectively. In the lysimeters potato was cultivated, and slant furrow culture and contour culture were applied. Up-down furrow and continuous fallow lysimeter was included in the experiments as a control plot. For the slant furrow and contour culture methods, minimum furrow mulching and gravel barrier were placed at each end of the furrows in the lysimeters from April to October in 2000 and 2001 to prevent soil and nutrient losses. In Heonggye, in two years experiments, average soil loss of 17 Mg/ha was found in the up-down and continuous fallow lysimeter and 2.6 Mg/ha from furrow minimum straw and slant furrow treatment, and 1.8 Mg/ha from slant furrow and gravel bag treatment. In the contour culture, the soil losses were further reduced. In Yongsan, soil loss in the slant furrow culture without any protection treatment was 167 Mg/ha, and the soil loss was reduce to 61 and 86 Mg/ha with minimum straw and gravel bag treatments, respectively. The soil loss could be reduced more than 45% by furrow minimum straw and gravel barrier. The furrow minimum straw or gravel bag barrier successfully reduced soil loss in clay loam soil in Heonggye, but still the treatments were not enough to reduce soil loss in saprolite piled sandy loam soil in Yongsan.