• Title/Summary/Keyword: SoilLoss

Search Result 1,069, Processing Time 0.029 seconds

Evaluation on national environmental functionality of farming on soil loss using the USLE and replacement cost method (USLE모형과 대체법을 이용한 밭농사의 토양유실 저감기능 계량화 평가)

  • Hyun, Byung-Keun;Kim, Moo-Sung;Eom, Ki-Cheol;Kang, Ki-Kyung;Yun, Hong-Bae;Seo, Myung-Cheol;Sung, Ki-Seog
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.6
    • /
    • pp.361-371
    • /
    • 2002
  • Multifunctionality of agriculture has been an important international issue in terms of environmental benefits and public concerns. We calculated soil loss mass in national basis using the USLE, and attempted to evaluate its economical benefits by replacement cost method. Soil loss mass ranged from 1.4 to $18MT\;ha^{-1}\;yr^{-1}$ was fairly fitted to measured values for 13 cropping systems. In national basis, the factors in USLE were evaluated as: 429.4 for rainfall and runoff factor. R, 0.15 for soil erodibility factor, K, 1.72 for topographic factor, LS, 0.275 for cover and management factor, C, and 0.856 for support practice factor, P. The soil loss estimated from upland farming using the USLE was $26.1MT\;ha^{-1}\;yr^{-1}$, but soil loss from the bare soil was $110.8MT\;ha^{-1}\;yr^{-1}$, the ratio of soil loss from upland farming to bare soil was 23 percents. Function of reducing soil loss in comparison with the bare soil was $84.7MT\;ha^{-1}\;yr^{-1}$, of which national soil loss mass was 62.6 million MT per annum in south Korea. Agriculture economic replacement cost of soil loss reduction was 497 billion Wons(398 million dollars) for the cost of upland soil dressing. For conservational purposes to increase the environmental benefits of upland farming, the agricultural practice including contour, strip cropping, terracing and division ditches should be implemented.

Soil Loss Reduction and Stabilization of Arsenic Contaminated Soil in Sloped Farmland using CMDS (Coal Mine Drainage Sludge) under Rainfall Simulation (광산지역 비소오염 경사 농경지 토양의 안정화 및 유실 저감을 위한 석탄광산배수슬러지의 적용성 평가)

  • Koh, Il-Ha;Kwon, Yo Seb;Jeong, Mun-Ho;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.18-26
    • /
    • 2021
  • Soil aggregation begins with flocculation of clay particles triggered by interfacial reactions of polyvalent cation such as Ca2+ and Fe3+, and they are also known as important elements to control the mobility of arsenic in soil environment. The objective of this study was to investigate the feasibility of CMDS (coal mine drainage sludge) for soil loss reduction and stabilization of arsenic-contaminated soil in a 37% sloped farmland under rainfall simulation. The amount of soil loss decreased by 43% when CMDS was applied, and this result was not significantly different from the case of limestone application, which yielded 46% decrease of soil loss. However, the relative amount of dispersed clay particles in the sediment CMDS-applied soil was 10% lower than that of limestone-applied soil, suggesting CMDS is more effective than limestone in inducing soil aggregation. The concentrations of bioavailable arsenic in CMDS amended soil decreased by 46%~78%, which was lower than the amount in limestone amended soil. Therefore, CMDS can be used as an effective amendment material to reduce soil loss and stabilize arsenic in sloped farmland areas.

Application of Remotely Sensed Data and Geographic Information System in Watershed Management Planning in Imha, Korea

  • CHAE Hyo-Sok;LEE Geun-Sang;KIM Tae-Joon;KOH Deuk-Koo
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.361-364
    • /
    • 2005
  • The use of remotely sensed data and geographic information system (GIS) to develop conservation-oriented watershed management strategies on Imha Dam, Korea, is presented. The change of land use for study area was analyzed using multi-temporal Landsat imagery. A soil loss model was executed within a GIS environment to evaluate watershed management strategies in terms of soil loss. In general, remotely sensed data provide efficient means of generating the input data required for the soil loss model. Also, GIS allowed for easy assessment of the relative erosion hazard over the watershed under the different land use change options. The soil loss model predicted substantial declines in soil loss under conservation-oriented land management compared to current land management for Imha Dam. The results of this study indicate that soil loss potential (5,782,829 ton/yr) on Imha Dam in 2003 is approximately 1.27 times higher than that (4,557,151 ton/yr) in 1989. This study represents the first attempt in the application of GIS technology to watershed conservation planning for Imha Dam. The procedures developed will contribute to the evolution of a decision support system to guide the land planning and dam management in Imha Dam.

  • PDF

Estimating Soil Loss in Alpine Farmland with RUSLE and SEDD (RUSLE와 SEDD를 이용한 고랭지 경작지로부터의 토양유실 평가)

  • Cho Hong-Lae;Jeoung Jong-Chul
    • Spatial Information Research
    • /
    • v.13 no.1 s.32
    • /
    • pp.79-90
    • /
    • 2005
  • The purpose of this study is to estimate quantitatively soil loss and sediment yield in alpine farmland. For this purpose, Naerinchon watershed in Gangwon province was selected as our study area and total annual soil loss and sediment yield was estimated respectively by the Revised Universal Soil Loss Equation (RUSLE) model and the Sediment Delivery Distributed (SEDD) model. The results of this study clearly show that dry field areas have significant impact on the total soil erosion and sediment yield compared with other land use. Dry field areas represent only $2.6\%$ of the total area of the watershed but soil loss and sediment yield account for $10.9\%$ and $33.12\%$ of the total amount respectively Especially as with alpine farmland, this result is more clearly shown. These areas account for $1.8\%$ of the entire watershed but contribute to $7.7\%$ and $15\%$ of the total soil loss and sediment yield respectively. From the above results, we can know that alpine farmland is important source of soil loss and sediment yield and it is need to prevent and control. soil erosion from alpine filmland urgently.

  • PDF

Effect of Red Pepper Canopy Coverages on Soil Loss and Runoff from Sloped Land with Different Transplanting Dates (경사지에서 고추 정식시기에 따른 토양유실과 유출수에 대한 식생피복 효과)

  • Cho, H.R.;Ha, S.K.;Hyun, S.H.;Hur, S.O.;Han, K.H.;Hong, S.Y.;Jeon, S.H.;Kim, E.J.;Lee, D.S.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.260-267
    • /
    • 2010
  • As sloped farmland is subject to runoff and soil erosion and consequently require appropriate vegetative coverage to conserve soil and water, a field study was carried out to evaluate the impact of crop canopy coverage on soil loss and runoff from the experimental plot with three different textural types (clay loam, loam, and sandy loam). The runoff and soil loss were examined at lysimeters with 15% slope, 5 m in length, and 2 m in width for five months from May to September 2009 in Suwon ($37^{\circ}$ 16' 42.67" N, $126^{\circ}$ 59' 0.11" E). Red pepper (Capsicum annum L. cv. Daechon) seedlings were transplanted on three different dates, May 4 (RP1), 15 (RP2), and 25 (RP3) to check vegetation coverage. During the experimental period, the vegetation coverage and plant height were measured at 7 day-intervals and then the 'canopy cover subfactor' (an inverse of vegetation cover) was subsequently calculated. After each rainfall ceased, the amounts of soil loss and runoff were measured from each plot. Under rainfall events >100 mm, both soil loss and runoff ratio increased with increasing canopy cover subfactor ($R^2$=0.35, p<0.01, $R^2$=0.09, p<0.1), indicating that as vegetation cover increases, the amount of soil loss and runoff reduces. However, the soil loss and runoff were depending on the soil texture and rainfall intensity (i. e., $EI_{30}$). The red pepper canopy cover subfactor was more highly correlated with soil loss in clay loam ($R^2$=0.83, p<0.001) than in sandy loam ($R^2$=0.48, p<0.05) and loam ($R^2$=0.43, p<0.1) plots. However, the runoff ratio was effectively mitigated by the canopy coverage under the rainfall only with $EI_{30}$<1000 MJ mm $ha^{-1}hr^{-1}$ ($R^2$=0.34, p<0.05). Therefore, this result suggested that soil loss from the red pepper field could be reduced by adjusting seedling transplanting dates, but it was also affected by the various soil textures and $EI_{30}$.

Analysis of soil loss on sloping land considering daily rainfall (일단위 강우량을 고려한 경사지의 토양유실량 분석)

  • Kim, Won-Jun;Park, Bum-Soo;Lee, Jae-Hyeok;Ryu, Ji-Chul;Jang, Chun-Hwa;Kim, Young-Sug;Park, Hwa-Yong;Lim, Kyoung-Jae
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.4
    • /
    • pp.739-745
    • /
    • 2011
  • The MUSLE was utilized in this study to estimate soil erosion using daily precipitation which was main influential factor in soil loss estimation. Various scenarios were simulated to evaluate how transition of slope, agricultural products and precipitation could affect soil loss in the field. It was found that slope was the most affecting factor in soil loss estimation. Especially 1.8 times the soil loss was expected with potato at 45% slope compared with codonopsis at same slope with MUSLE model. Fortunately, farmers had planted codonopsis at this slope to reduce soil erosion from this steep slope. As shown in this study, the MUSLE method could be utilized to determine optimum crop type for each field with various slope conditions to minimize soil erosion. This approach utilized in this study could be applied to other agricultural watersheds to evaluate various soil erosion conditions.

EVALUATION OF SPATIAL SOIL LOSS USING THE LAND USE INFORMATION OF QUICKBIRD SATELLITE IMAGERY

  • Lee, Mi-Seon;Park, Jong-Yoon;Jung, In-Kyun;Kim, Seong-Joon
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.274-277
    • /
    • 2007
  • This study is to estimate the spatial distribution of soil loss using the land use data produced from QuickBird satellite imagery. For a small agricultural watershed (1.16 $km^2$) located in the upstream of Gyeongan-cheon watershed, a precise agricultural land use map were prepared using QuickBird satellite image of April 5 of 2003. RUSLE (Revised Universal Soil Loss Equation) was adopted for soil loss estimation. The data (DEM, soil and land use) for the RUSLE were prepared for 5 m and 30 m spatial resolution. The results were compared with each other and the result of 30 m Landsat land use data.

  • PDF

Reducing Soil Loss of Sloped Land using Lime-Organic Compost mixtures under Rainfall Simulation (인공강우 모사를 통한 석회/유기퇴비 혼합물의 경사지 토양유실 억제효과)

  • Koh, Il-Ha;Roh, Hoon;Hwang, Wonjae;Seo, Hyunggi;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.3
    • /
    • pp.43-50
    • /
    • 2018
  • In a previous study, the feasibility of four materials (bentonite, steelmaking slag, lime and organic compost) to induce soil aggregate formation was assessed and the mixtures of organic compost and lime were chosen as most effective amendments in terms of cost benefit. This work is a subsequent study to evaluate the effectiveness of those amendments in reducing soil loss in $15^{\circ}$ sloped agricultural area by using rainfall simulation test. Three different soils were treated with two conditions of organic compost/lime mixtures (2% + 2%, 3% + 1%, w/w). In the amended soils, soil fertility was increased due to the increase of CEC, T-N, and T-P. During the rainfall simulation, suspended solid in run-off water from amended soil were reduced by 43% ~ 78%. When the content of organic compost was higher than that of lime, reduction of soil loss was also increased by 67% ~ 78%. Sediment discharge was also decreased by 72% ~ 96% in the amended soil. Similar to the suspended solid analysis, higher organic compost content led to more reduction of soil discharging, which implies organic compost is more effective than lime in reducing soil loss. The overall result suggests that the mixtures of organic compost and lime could be used as amendment materials to reduce soil loss in sloped farmland.

Potential soil loss evaluation using the RUSLE/RUSLE-runoff models in Wadi Saida watershed (N-W Algeria)

  • Cherif, Kessar;Yahia, Nasrallah;Bilal, Bilssag
    • Advances in environmental research
    • /
    • v.9 no.4
    • /
    • pp.251-273
    • /
    • 2020
  • Soil degradation has become a major worldwide environmental problem, particularly in arid and semi-arid climate zones due to irregular rainfall and the intensity of storms that frequently generate heavy flooding. The main objective of this study is the use of geographic information system and remote sensing techniques to quantify and to map the soil losses in the Wadi Saida watershed (624 ㎢) through the revised universal soil loss equation model and a proposed model based on the surface erosive runoff. The results Analysis revealed that the Wadi Saida watershed showed moderate to moderately high soil loss, between 0 and 1000 t/㎢/year. In the northern part of the basin in the region of Sidi Boubkeur and the mountains of Daia; which are characterized by steep slopes, values can reach up to 3000 t/㎢/year. The two models in comparison showed a good correlation with R = 0.95 and RMSE = 0.43; the use of the erosive surface runoff parameter is effective to estimate the rate of soil loss in the watersheds. The problem of soil erosion requires serious interventions, particularly in basins with disturbances and aggressive climatic parameters. Good agricultural practices and forest preservation areas play an important role in soil conservation.

Applicability of the Wind Erosion Prediction System for prediction of soil loss by wind in arable land

  • Lee, Kyo-Suk;Seo, Il-Hwan;Lee, Sang-Phil;Lim, Chul-Soon;Lee, Dong-Sung;Min, Se-Won;Jung, Hyun-Gyu;Yang, Jae-Eui;Chung, Doug-Young
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.845-857
    • /
    • 2020
  • The precise estimation of accelerated soil wind erosion that can cause severe economic and environmental impacts still has not been achieved to date. The objectives of this investigation were to verify the applicability of a Wind Erosion Prediction System (WEPS) that expressed the soil loss as mass per area for specific areas of interest on a daily basis for a single event in arable lands. To this end, we selected and evaluated the results published by Hagen in 2004 and the soil depth converted from the mass of soil losses obtained by using the WEPS. Hagen's results obtained from the WEPS model followed the 1 : 1 line between predicted and measured value for soil losses with only less than 2 kg·m-2 whereas the values between the measured and predicted loss did not show any correlation for the given field conditions due to the initial field surface condition although the model provided reasonable estimates of soil loss. Calculated soil depths of the soil loss by wind for both the observed and predicted ones ranged from 0.004 to 3.113 cm·10 a-1 and from 0 to 2.013 cm·10 a-1, respectively. Comparison of the soil depths between the observed and predicted ones did not show any good relationship, and there was no soil loss in the predicted one while slight soil loss was measured in the observed one. Therefore, varying the essential model inputs and factors related to wind speed and soil properties are needed to accurately estimate soil loss for a given field in arable land.