DOI QR코드

DOI QR Code

Potential soil loss evaluation using the RUSLE/RUSLE-runoff models in Wadi Saida watershed (N-W Algeria)

  • Cherif, Kessar (Laboratory of Biotoxicology, Pharmacognosia and Biological Valuation of Plants, Department of Biology, Faculty of Science, University of Saida) ;
  • Yahia, Nasrallah (Laboratory of Biotoxicology, Pharmacognosia and Biological Valuation of Plants, Department of Biology, Faculty of Science, University of Saida) ;
  • Bilal, Bilssag (Algerian Space Agency, Space Techniques Center)
  • Received : 2020.09.22
  • Accepted : 2020.11.29
  • Published : 2020.12.25

Abstract

Soil degradation has become a major worldwide environmental problem, particularly in arid and semi-arid climate zones due to irregular rainfall and the intensity of storms that frequently generate heavy flooding. The main objective of this study is the use of geographic information system and remote sensing techniques to quantify and to map the soil losses in the Wadi Saida watershed (624 ㎢) through the revised universal soil loss equation model and a proposed model based on the surface erosive runoff. The results Analysis revealed that the Wadi Saida watershed showed moderate to moderately high soil loss, between 0 and 1000 t/㎢/year. In the northern part of the basin in the region of Sidi Boubkeur and the mountains of Daia; which are characterized by steep slopes, values can reach up to 3000 t/㎢/year. The two models in comparison showed a good correlation with R = 0.95 and RMSE = 0.43; the use of the erosive surface runoff parameter is effective to estimate the rate of soil loss in the watersheds. The problem of soil erosion requires serious interventions, particularly in basins with disturbances and aggressive climatic parameters. Good agricultural practices and forest preservation areas play an important role in soil conservation.

Keywords

Acknowledgement

The authors would like to thanks Dr. Hadj Khatir (private scientific consultant in Canada) for proofing the English.

References

  1. Achite, M. and Ouillon, S. (2016), "Recent changes in climate, hydrology and sediment load in the Wadi Abd, Algeria (1970-2010)", Hydrol. Earth Syst. Sci., 20(4), 1355. https://doi.org/10.5194/hess-20-1355-2016.
  2. Benchettouh, A., Kouri, L. and Jebari, S. (2017), "Spatial estimation of soil erosion risk using RUSLE/GIS techniques and practices conservation suggested for reducing soil erosion in Wadi Mina watershed (northwest, Algeria)", Arab. J. Geosci., 10(4), 79. https://doi.org/10.1007/s12517-017-2875-6.
  3. Blissag, B. (2020), "Estimation of surface frequency runoff of Wadi Soubella watershed using remote sensing and georaphic information system", Proceedings of the 2020 Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), Tunis, Tunisia, March.
  4. Bouhadeb, C.E., Menani, M.R., Bouguerra, H. and Derdous, O. (2018), "Assessing soil loss using GIS based RUSLE methodology. Case of the Bou Namoussa watershed-north-east of Algeria", J. Water Land Dev., 36(1), 27-35. https://doi.org/10.2478/jwld-2018-0003.
  5. Brakensiek, D.L. and Rawls, W.J. (1983), "Agricultural management effects on soil water processes part II: Green and ampt parameters for crusting soils", Trans. ASAE, 26(6), 1753-1757. https://doi.org/10.13031/2013.33838.
  6. Brown, L.C. and Foster, G.R. (1987), "Storm erosivity using idealized intensity distributions", Trans. ASAE, 30(2), 379-0386. https://doi.org/10.13031/2013.31957.
  7. Bui, X.T., Nguyen, V.D., Nguyen, M.T. and Nguyen, N.H. (2019), "Using the method of soil conservation service curve number (SCS-CN) combined with the geographic estimate the surface runoff on the Co To island, information system (GIS) to north Vietnam", Int. J. Adv. Eng. Res. Sci., 6(9), 59-75. https://doi.org/10.22161/ijaers.69.6.
  8. Chikh, H.A., Habi, M. and Morsli, B. (2019), "Influence of vegetation cover on the assessment of erosion and erosive potential in the issermarly watershed in northwestern Algeria-comparative study of RUSLE and PAP/RAC methods", Arab. J. Geosci., 12(5), 154. https://doi.org/10.1007/s12517-019-4294-3.
  9. Cronshey, R. (1986), Urban Hydrology for Small Watersheds, USA Department of Agriculture, Soil Conservation Service, Engineering Division, U.S.A.
  10. Desmet, P.J.J. and Govers, G. (1996), "A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units", J. Soil Water Cons., 51(5), 427-433.
  11. Djoukbala, O., Hasbaia, M., Benselama, O. and Mazour, M. (2018), "Comparison of the erosion prediction models from USLE, MUSLE and RUSLE in a Mediterranean watershed, case of Wadi Gazouana (NW of Algeria)", Model. Earth Syst. Environ., 5(2), 725-743. https://doi.org/10.1007/s40808-018-0562-6.
  12. Doetterl, S., Six, J., Van Wesemael, B. and Van Oost, K. (2012), "Carbon cycling in eroding landscapes: Geomorphic controls on soil organic C pool composition and C stabilization", Global Change Biol., 18(7), 2218-2232. https://doi.org/10.1111/j.1365-2486.2012.02680.x.
  13. Ellison, W.D. (1947), "Soil erosion studies: Part I", Agric. Eng., 28(4),145-146.
  14. FAO and ISRIC (2012), Harmonized World Soil Database, FAO, Italy and IIASA, Austria. http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en.
  15. Fu, B.J., Zhao, W.W., Chen, L.D., Zhang, Q.J., Lu, Y.H., Gulinck, H. and Poesen, J. (2005), "Assessment of soil erosion at large watershed scale using RUSLE and GIS: A case study in the Loess plateau of China", Land Degrad. Dev., 16(1), 73-85. https://doi.org/10.1002/ldr.646.
  16. Gajbhiye, S., Mishra, S.K. and Pandey, A. (2014), "Relationship between SCS-CN and sediment yield", Appl. Water Sci., 4(4), 363-370. https://doi.org/10.1007/s13201-013-0152-8.
  17. Gao, G.Y., Fu, B.J., Lu, Y.H., Liu, Y., Wang, S., Zhou, J. and Wang, L. (2012), "Coupling the modified SCS-CN and RUSLE models to simulate hydrological effects of restoring vegetation in the Loess plateau of China", Hydrol. Earth Syst. Sci., 16(7), 2347-2364. https://doi.org/10.5194/hess-16-2347-2012.
  18. Gelagay, H.S. and Minale, A.S. (2016), "Soil loss estimation using GIS and remote sensing techniques: A case of Koga watershed, northwestern Ethiopia", Int. Soil Water Conserv. Res., 4(2), 126-136. https://doi.org/10.1016/j.iswcr.2016.01.002.
  19. Ghosal, K. and Bhattacharya, S.D. (2020), "A review of RUSLE model", J. Indian Soc. Remote Sens., 48, 689-707. https://doi.org/10.1007/s12524-019-01097-0.
  20. Hallouz, F., Meddi, M., Mahe, G., Alirahmani, S. and Keddar, A. (2018), "Modeling of discharge and sediment transport through the SWAT model in the basin of Harraza (northwest of Algeria)", Water Sci., 32(1), 79-88. https://doi.org/10.1016/j.wsj.2017.12.004.
  21. Kayet, N., Pathak, K., Chakrabarty, A. and Sahoo, S. (2018), "Evaluation of soil loss estimation using the RUSLE model and SCS-CN method in hillslope mining areas", Int. Soil Water Conserv. Res., 6(1), 31-42. https://doi.org/10.1016/j.iswcr.2017.11.002.
  22. Kessar, C., Benkesmia, Y., Blissag, B. and Beldjilali, B. (2020), "GIS based analytical hierarchical process for the assessment of groundwater potential zones in Wadi Saida watershed (NW-ALGERIA), Proceedings of the 2020 Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), Tunis, Tunisia, March.
  23. Khanchoul, K., Selmi K. and Benmarce, K. (2020), "Assessment of soil erosion by rusle model in the mellegue watershed, northeast of Algeria", Environ. Ecosyst. Sci., 4(1), 15-22. https://doi.org/10.26480/ees.01.2020.15.22.
  24. Koirala, P., Thakuri, S., Joshi, S. and Chauhan, R. (2019), "Estimation of soil erosion in Nepal using a RUSLE modeling and geospatial tool", Geosciences, 9(4), 147. https://doi.org/10.3390/geosciences9040147.
  25. Krause, P., Boyle, D. and Base, F. (2005), "Comparison of different efficiency criteria for hydrological model assessment", Adv. Geosci., 5, 89-97. http://doi.org/10.5194/adgeo-5-89-2005.
  26. Le Bissonnais, Y., Montier, C., Jamagne, M., Daroussin, J. and King, D. (2002), "Mapping erosion risk for cultivated soil in France", Catena, 46(2-3), 207-220. https://doi.org/10.1016/S0341-8162(01)00167-9.
  27. Lufafa, A., Tenywa, M.M., Isabirye, M., Majaliwa, M.J.G. and Woomer, P.L. (2003), "Prediction of soil erosion in a Lake Victoria basin catchment using a GIS-based universal soil loss model", Agr. Syst., 76(3), 883-894. https://doi.org/10.1016/S0308-521X(02)00012-4.
  28. McCool, D.K., Brown, L.C., Foster, G.R., Mutchler, C.K. and Meyer, L.D. (1987), "Revised slope steepness factor for the universal soil loss equation", Trans. ASAE, 30(5), 1387-1396. https://doi.org/10.13031/2013.30576.
  29. Mihi, A., Benarfa, N. and Arar, A. (2020), "Assessing and mapping water erosion-prone areas in northeastern Algeria using analytic hierarchy process, USLE/RUSLE equation, GIS, and remote sensing", Appl. Geomat., 12(2), 179-191. https://doi.org/10.1007/s12518-019-00289-0.
  30. Mishra, S.K. and Singh, V.P. (2007), Advances in Hydraulics and Hydrology, Water Resources Publication (WRP), Colorado, U.S.A.
  31. Morgan, R.P.C. (2005), Soil Erosion and Conservation (Third Edition), Blackwell Science, Malden, Massachusetts, U.S.A.
  32. Moriasi, D.N., Gitau, M.W., Pai, N. and Daggupati, P. (2015), "Hydrologic and water quality models: Performance measures and evaluation criteria", Trans. ASABE, 58(6), 1763-1785. https://doi.org/10.13031/trans.58.10715.
  33. Mostephaoui, T., Merdas, S., Sakaa, B., Hanafi, M.T. and Benazzouz, M.T. (2013), "Cartographie des risques d'erosion hydrique par l'application de l'equation universelle de pertes en sol a l'aide d'un Systeme d'Information Geographique dans le bassin versant d'El Hamel (Boussaada) [Water erosion risks mapping by application of the universal soil loss equation using a Geographic Information System in the El Hamel watershed (Boussaada)]", J. Algerien Regions Arides, 2013, 131-147 (in French).
  34. NASA (2015), Collection User Guide, Shuttle Radar Topography Mission (SRTM), NASA, U.S.A. https://lpdaac.usgs.gov.
  35. NASA (2018), NASA Earth Data, NASA, U.S.A. https://earth_data.nasa.gov.
  36. Neggaz, F.Z. and Kouri, L. (2018), "Assessment of soil water erosion using RUSLE and GIS techniques: A case study of Wadi El-Abtal watershed, Algeria", J. Biodiv. Environ. Sci., 13(5), 166-179.
  37. Neitsch, S.L., Arnold, J.G., Kiniry, J.R. and Williams, J.R. (2011), Soil and Water Assessment Tool Theoretical Documentation Version 2009, Texas Water Resources Institute, Texas, U.S.A.
  38. Ouallali, A., Moukhchane, M., Aassoumi, H., Berrad, F. and Dakir, I. (2017), "Evaluation and mapping of water erosion rates in the watershed of the Arbaa Ayacha river (western Rif, northern Morocco)", Bull. Inst. Sci., 2016, 65-79.
  39. Panagos, P., Borrelli, P., Meusburger, K., Yu, B., Klik, A., Lim, K.J., Yang, J.E., Ni, J., Miao, C., Chattopadhyay, N., Sadeghi, S.H., Hazbavi, Z., Zabihi, M., Larionov, G.A., Krasnov, S.F., Gorobets, A.V., Levi, Y., Erpul, G., Birkel, C., Hoyos, N., Naipal, V., Oliveira, P.T.S., Bonilla, C.A., Meddi, M., Nel, W., Al Dashti, H., Boni, M., Diodato, N., Van Oost, K., Nearing, M. and Ballabio, C. (2017), "Global rainfall erosivity assessment based on high-temporal resolution rainfall records", Sci. Rep., 7(1), 1-12. https://doi.org/10.1038/s41598-017-04282-8.
  40. Patil, R.J., Sharma, S.K. and Tignath, S. (2015), "Remote sensing and GIS based soil erosion assessment from an agricultural watershed", Arab. J. Geosci., 8(9), 6967-6984. https://doi.org/10.1007/s12517-014-1718-y.
  41. Pennock, D., McKenzie, N. and Montanarella, L. (2015), Status of the World's Soil Resources, Technical Summary FAO, Rome, Italy.
  42. Remini, W. and Remini, B. (2003), "La sedimentation dans les barrages de l'Afrique du nord[Sedimentation in Dams in North Africa]", Larhyss J., 2, 45-54 (in French).
  43. Renard, K.G. (1997), Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE), United States Government Printing, U.S.A.
  44. Renard, K.G., Yoder, D.C., Lightle, D.T. and Dabney, S.M. (2011), Universal Soil Loss Equation and Revised Universal Soil Loss Equation, Handbook of erosion modeling, Blackwell Publishing Ltd., U.K.
  45. Roose, E. (1996), "Methodes de mesure des etats de surface du sol, de la rugosite et des autres caracteristiques qui peuvent aider au diagnostic de terrain des risques de ruissellement et d'erosion, en particulier sur les versants cultives des montagnes [Methods for measuring soil surface conditions, roughness and other characteristics that can help in the field diagnosis of the runoff and erosion risks, especially on cultivated mountain slopes]", Bull. Reseau Eros., 16, 87-97 (in French).
  46. Sabir, M. and Roose, E. (2004), "Influences du couvert vegetal et des sols sur le stock de carbonne du sol et les risques d'erosion et de ruissellement dans les montagnes mediterraneennes du Rif occidental (Maroc)[Influences of plant cover and soils on the soil carbon stock and the risks of erosion and runoff in the Mediterranean mountains of the western Rif (Morocco)]", Bull. Reseau Eros., 23, 144-154 (in French).
  47. Sahli, Y., Mokhtari, E., Merzouk, B., Laignel, B., Vial, C. and Madani, K. (2019), "Mapping surface water erosion potential in the Soummam watershed in northeast Algeria with RUSLE model", J. Mountain Sci., 16(7), 1606-1615. https://doi.org/10.1007/s11629-018-5325-3.
  48. SCS (1956), Hydrology, National Engineering Handbook, Soil Conservation Service, USDA, Washington, U.S.A.
  49. Singh, J., Knapp, H.V. and Demissie, M. (2004), "Hydrologic modeling of the Iroquois River watershed using HSPF and SWAT", ISWS CR 2004-08, Illinois State Water Survey, U.S.A.
  50. SSSA (2008), Glossary of Soil Science Terms 2008, ASA-CSSA-SSSA, Soil Science Glossary Terms Committee and Soil Science Society of America, U.S.A.
  51. Stein, M.L. (2012), Interpolation of Spatial Data: Some Theory for Kriging, Springer Science and Business Media, Germany.
  52. Toubal, A.K., Achite, M., Ouillon, S. and Dehni, A. (2018), "Soil erodibility mapping using the RUSLE model to prioritize erosion control in the Wadi Sahouat basin, north-west of Algeria", Environ. Monit. Assess, 190(4), 210. https://doi.org/10.1007/s10661-018-6580-z.
  53. Van der Knijff, J.M., Jones, R.J.A. and Montanarella, L. (2000), Estimation of Erosion Risk in Italy, European of Soil Bur, European Union.
  54. Van Oost, K., Quine, T.A., Govers, G., De Gryze, S., Six, J., Harden, J.W., Ritchie, J.C., McCarty, G.W., Heckrath, G., Kosmas, C., Giraldez, J.V., Marques da Silva J.R. and Merck, R. (2007), "The impact of agricultural soil erosion on the global carbon cycle", Science, 318(5850), 626-629. https://doi.org/10.1126/science.1145724.
  55. Walling, D.E. and Kleo, A.H.A. (1979), "Sediment yield of rivers in areas of low precipitation: A global view", Int. Assoc. Sci. Hydrol. Pub., 128, 479-493.
  56. Wang, L., Qian, J., Qi, W.Y., Li, S.S. and Chen, J.L. (2018), "Changes in soil erosion and sediment transport based on the RUSLE model in Zhifanggou watershed, China", Proc. IAHS, 377, 9-18. https://doi.org/10.5194/piahs-377-9-2018.
  57. Wener, C. (1981), Soil Conservation in Kenya, Nairobi, Ministry of Agriculture, Soil Conservation Extension Unit, Kenya.
  58. Wiebe, K.D. (2003), "Linking land quality, agricultural productivity, and food security", USDA-ERS Agricultural Economic Report, U.S.A.
  59. Williams, J.R. and Berndt, H.D. (1977), "Sediment yield prediction based on watershed hydrology", Trans. ASAE, 20(6), 1100-1104. https://doi.org/10.13031/2013.35710.
  60. Williams, C.K. and Rasmussen, C.E. (2006), Gaussian Processes for Machine Learning, MIT Press, U.K.
  61. Wischmeier, W.H. and Smith, D.D. (1949), Predicting Rainfall-Erosion Losses from Cropland East of the Rocky Mountains: Guide for Selection of Practices for Soil and Water Conservation, US Department of Agriculture, U.S.A.
  62. Wischmeier, W.H. and Smith, D.D. (1958), "Rainfall energy and its relationship to soil loss", Eos. Trans. Am. Geophys. Union, 39(2), 285-291. https://doi.org/10.1029/TR039i002p00285.
  63. Wischmeier, W.H. and Smith, D.D. (1978), Predicting Rainfall Erosion Losses: A Guide to Conservation Planning, Department of Agriculture, Science and Education Administration, U.S.A.
  64. Yles, F. (2014), "Rain-flow modeling and solid transport in the Oued Saida watershed", Ph.D. Dissertation, Abou Bakr Belkaid University, Tlemcen, Algeria.