• Title/Summary/Keyword: SoilLoss

Search Result 1,069, Processing Time 0.024 seconds

Utilizing the Revised Universal Soil Loss Equation (RUSLE) Technique Comparative Analysis of Soil Erosion Risk in the Geumhogang Riparian Area (범용토양유실공식(RUSLE) 기법을 활용한 금호강 수변지역의 토양유실위험도 비교 분석)

  • Kim, Jeong-Cheol;Yoon, Jung-Do;Park, Jeong-Soo;Choi, Jong-Yun;Yoon, Jong-Hak
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.179-190
    • /
    • 2018
  • The purpose of this study is an analysis of the risk of soil erosion before and after the maintenance of riparian area using the Revised Universal Soil Loss Equation (RUSLE) model based on GIS and digitizing data. To analysis of soil erosion loss in the study area, land cover maps, topographical maps, soil maps, precipitation and other data were used. After digitizing the riparian area of the Geumhogang, the area is divided into administrative district units, respectively. Amount of soil loss was classified into 5 class according to the degree of loss. Totally, 1 and 5 class were decreased, and 2-4 class were increased. Daegu and Yeongcheon decreased the area of 5 class, and Gyeongsan did not have area of 5 class. The reason for this is thought to be the decrease of the 5 class area due to the park construction, expansion of artificial facilities, and reduction of agricultural land. Simplification of riverside for river dredging and park construction has increased the flow rate of the riverside and it is considered that the amount of soil erosion has increased.

Soil Loss and Water Runoff in a Watershed in Yeoju (소유역(小流域)에서 토양(土壤) 유실(流失) 및 물 유출양상(流出樣相))

  • Lee, Nan-Jong;Oh, Se-Jin;Jung, Pil-Kyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.3
    • /
    • pp.211-215
    • /
    • 1998
  • Soil loss and runoff were investigated in a small watershed located in Sangeo-ri, Yeoju-eup, Yeoju-gun, Kyonggi-do. The watershed with the area of 35 ha consists of forest, grassland, uplands and mulberry. V-notch type water tank. flow-meter, automatic water sampler and rain gauge were installed at the main outlet stream. Out of $1.037.9Mg\;35ha^{-1}$ of total annual rainfall. 17.9% was lost via run-off. The total amount of soil eroded was $152.2Mg\;35ha^{-1}$, of which $78.6Mg\;35ha^{-1}$ was suspended load and $73.6Mg\;35ha^{-1}$ ha was sediment load. The soil losses under different land uses were $16.02Mg\;ha^{-1}$ for upland annual Crops. $2.69Mg\;ha^{-1}$ for mulberry field, $0.58Mg\;ha^{-1}$ for grassland and $0.55Mg\;ha^{-1}$ for forest. The predicted soil loss by Universal Soil Loss Equation was approximately 20% underestimated in forest, grassland and uplands, and 32% underestimated in mulberry field.

  • PDF

Soil Erosion Risk Assessment by Soil Characteristics and Landuse in the Upper Nakdong River Basin (토양 특성 및 토지이용에 따른 낙동강 상류지역 토양침식위험성 평가)

  • Park, Chan-Won;Sonn, Yeon-Kyu;Hyun, Byung-Keun;Song, Kwan-Cheol;Chun, Hyun-Chung;Cho, Hyun-Jun;Moon, Yong Hee;Yun, Sun-Gang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.890-896
    • /
    • 2012
  • This study was conducted to evaluate soil erosion risk with a standard unit watershed in the upper Upper Nakdong River Basin according to soil characteristics and landuse using the spatial soil erosion map. The study area is $3,605.6km^2$, which consists of 2 subbasins, 35 standard unit watersheds (Andong basin 18, Imha basin 17). As a evaluation of soil erosion potential using the spatial soil erosion map, total annual soil loss and soil loss per area estimated $2,013{\times}10^3Mg\;yr^{-1}$ (Andong basin 979, Imha basin 1,034) and $6.1Mg\;ha^{-1}yr^{-1}$ (Andong basin 6.0, Imha basin 5.2), respectively. 54.2% of soil loss was originated from Arable land (Andong basin 49.0%, Imha basin 59.0%), and the area of regions, graded as higher "Moderate" for annual soil loss, was $201.7km^2$ (Andong basin 84.9, Imha basin 116.8). Average soil loss per area of unit watersheds by classification according to soil dominant parent material types ranked "Sedimentary rock group" > "Mixed group" > "Metamorphic rock group" > "Igneous rock group". In conclusion, the results of this study inform that the classification of soil parent material type would be effective for soil erosion analysis and interpretation in the Upper Nakdong River Basin.

Region-Scaled Soil Erosion Assessment using USLE and WEPP in Korea

  • Kim, Min-Kyeong;Jung, Kang-Ho;Yun, Sun-Gang;Kim, Chul-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.314-320
    • /
    • 2008
  • During the summer season, more than half of the annual precipitation in Korea occurs during the summer season due to the geographical location in the Asian monsoon belt. So, this causes severe soil erosion from croplands, which is directly linked to the deterioration of crop/land productivity and surface water quality. Therefore, much attention has been given to develop accurate estimation tools of soil erosion. The aim of this study is to assess the performance of using the empirical Universal Soil Loss Equation (USLE) and the physical-based model of the Water Erosion Prediction Project (WEPP) to quantify eroded amount of soil from agricultural fields. Input data files, including climate, soil, slope, and cropping management, were modified to fit into Korean conditions. Chuncheon (forest) and Jeonju (level-plain) were selected as two Korean cities with different topographic characteristics for model analysis. The results of this current study indicated that better soil erosion prediction can be achieved using the WEPP model since it has better power to illustrate a higher degree of spatial variability than USLE in topography, precipitation, soils, and crop management practices. These present findings are expected to contribute to the development of the environmental assessment program as well as the conservation of the agricultural environment in Korea.

Relationship between Biodegradation of Biosynthetic Plastics, Poly-$\beta$-Hydroxybutyrate, and Soil Temperature (생합성 플라스틱 Poly-$\beta$-Hydroxybutyrate의 생분해와 토양온도의 관계)

  • 조강현;이혜미;조경숙
    • The Korean Journal of Ecology
    • /
    • v.21 no.3
    • /
    • pp.277-282
    • /
    • 1998
  • The microbial degradation of $poly-{\beta}-hydroxybutyrate$ (PHB) films was studied in soil microco는 incubated at a constant temperature of 2, 10, 20, 30 and $40^{\circ}C$ for up to 49 days. The degradation rate measured through loss of weight was enhanced by incubation at a higher temperature. At the soil temperature $40^{\circ}C$, $poly-{\beta}-hydroxybutyrate$ was rapidly degraded at a decay rate of 3.5% weight loss per day. The degradation of $poly-{\beta}-hydroxybutyrate$ did not affected significantly the chemical properties of soils such as pH and electric conductivity. However, microbial activity of soil in terms of dehydrogenase activity was increased by the degradation of $poly-{\beta}-hydroxybutyrate$.

  • PDF

Development of Polypropylene Fiber Reinforced Environmental Friendly Pavement Material for Farm Road (폴리프로필렌 섬유보강 환경친화형 포장재료의 개발)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.35-40
    • /
    • 2004
  • This study is performed to examine the physical and mechanical properties of eco-concrete using soil, natural coarse aggregate, excellent soil compound and polypropylene fiber. The test result shows that mass loss ratio is decreased with increasing the content of coarse aggregate and excellent soil compound. The compressive and flexural strengths are increased with increasing the content of coarse aggregate, excellent soil compound and polypropylene fiber. The coefficient of permeability is decreased with increasing the content of coarse aggregate and excellent soil compound, but it is increased in 0.2% polypropylene fiber content. The lowest coefficient of permeability is showed in $5.066\times 10^{-9}$cm/s. These eco-concrete can be used for farm road.

A Geographic Information System(GIS) Approach for Modeling a Soil Erosion Map from Available Data

  • Yang, Young-Kyu;Miller, Lee-D.
    • Korean Journal of Remote Sensing
    • /
    • v.2 no.1
    • /
    • pp.23-33
    • /
    • 1986
  • The Universal Soil Loss Equation (USLE) has been applied to the microcomputer based Geographic Information System (GIS) data planes to model a soil erosion map for a county. The conventional method applied by US Soil conservation Service (SCS) has been tedious and time consuming process on a mainframe computer which yields a multisectioned, hard to interprete, line printer map of the each county's soil loss. The new approach proved to be an economical and efficient tool for the natural resource managers in their decision malting in land conservation practice. They can simulate the variety of conservation practices and assess the cost and benefit without physically implementing the conservation measures.7he new approach also can produce all the other graphical and statistical reports.

A Study on Scale at a Debris Flow Landslide Damaged Area (토석류 산사태 피해지의 규모에 관한 연구)

  • Sin, Sung-Sick;Choi, Young-Nam;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.36
    • /
    • pp.57-63
    • /
    • 2016
  • In this study characteristics of debris flow landslide were investigated on the focus of debris flow disaster occurred by heavy rainfall in 2013 at Goeun-ri around Kaeryoung Mt. in Chuncheon-si. Appropriate method for estimating scale of debris flow was investigated by comparing those values from soil loss by Universal Soil Loss Equation, debris flow yield rate obtained by field survey of investigating debris flow path from initiation and erosion to deposition and other methods. As results of this study, it might be an opportunity of contributing to construct the data base for determining the size of erosion control facilities in future.

  • PDF

The Activity and Utilization of Urease Inhibitors (요소분해효소 억제물질의 작용과 응용에 관한 연구)

  • 주영규
    • Asian Journal of Turfgrass Science
    • /
    • v.6 no.1
    • /
    • pp.23-28
    • /
    • 1992
  • Urea, the major N source of world agriculture involves a serious urea-N loss through NH$_3$volatilization. Approaches to decrease N loss include using urease inhibitors in view of the environmental protection and the increase of urea-N efficiency. The purpose of laboratory researches was toassess the potential value of urease inhibitors to increase urea-N efficiency in soil and Kentucky blue-grass(Poa Pratensis L.) turf. The activity of urease inhibitors Phenyiphosphorodiamjdate(ppD) and N-(n-butyl) thiophosphoric triamjde(NBPT) measured to break-down ammonia volatilization. The soil and turf used in this project were from the fairway in one of the Korean gof course. The researches were carried out for two weeks to measure the urease activities on urea hydrolysis under four temperatures (10~ 40$^{\circ}C$) and for one week on turfgrass using forced-draft system. Results indicated that Urea-N involves considerable loss through gaseous NH$_3$ by urease activities in plant-soil systems. Urease inhibitors PPD and NBPT have potential value for increasing N use efficiency by reduing NH$_3$ volatilization. NBPT deserves futher evaluation as fertilizer amendment than PPD use of urea in turf industries.

  • PDF

An Analysis of the Relationship of Soil Factors to the Height Growth of Pinus densiflora within the Young Natural Stands in Central Korea (중부한국의 자연생 소나무의 연 신장성장율에 영향을 미치는 토양요인들에 대한 다요인 분석)

  • 오계칠
    • Journal of Plant Biology
    • /
    • v.15 no.4
    • /
    • pp.1-12
    • /
    • 1972
  • To study on the annual height growth of Pinus densiflora within natural pine stands in central Korea, twenty two pure closed Pinus densiflora stands were selected subjectively in the west-central region of Korea. In each stand twenty trees were chosen randomly. For each tree, abotu ten to fifteen measurements of internodal lengths were made from leader top to trunk base. A total of one hundred thirty four soil samples was collected. Each soil sample was bulked with three subsamples. The ranges of the growth measurements per stand, per tree and per observation were 14.9-35.4cm, 9.0cm-54.4cm and 2.4cm-69.0cm respectively. The total mean value was 23.5cm. The Student-Newman-Keul's tests for the multiple comparison among the mean values of the height growth per stand were very highly significant. The resutls of the analysis of variance of the height growth data for the selected fifteen stands among the twenty two stands indicate that sampling efficiency might be increased to 744% if measurement of the growth were made on fifteen trees per stand from twenty stands instead of twenty trees per stand from fifteen stands. The annual height growths of Pinus densiflora and Pinus koraiensis for the period from 1960 to 1968 were 21.74$\pm$5.29cm (10) and 20.56$\pm$5.59cm (10) respectively. The total means of easily-soluble phosphorus, total nitrogen, loss on ignition and pH for the soil samples were 2.8 ppm, 0.09%, 5.4% and 4.7 respectively. The ranges of those amounts were 18.7-1.7ppm, 0.17-0.05%, 11.6%-3.1%, 3.9-5.1 respectively. The relationship of the annual height growth of P. densiflora to soil was studied in terms of standard partial multiple regression. Among soil properties such as non-capillary pore space, capillary pore space, maximum field capacity, loss on ignition, soil reaction, total nitrogen and easily-soluble phosphoros investigated, the easily soluble phosphorus in one analysis and loss on ignition and soil reaction in the other analysis seem to have significant positive influence on the annual height growth.

  • PDF