• 제목/요약/키워드: Soil water content model

검색결과 229건 처리시간 0.023초

준설매립토 및 화강풍화토의 흙-수분 특성곡선에 관한 연구 (A Study on Soil-Water Characteristic Curves of Reclaimed Soil and Weathered Granite Soil)

  • 신은철;이학주;김환준
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.743-750
    • /
    • 2002
  • Unsaturated soil has a possibility to induce a negative pore water pressure. Until now, saturated soil is mainly focused on the research of soil mechanics. Recently, soil mechanics is researched on two major parts such as saturated and unsaturated soil mechanics. Negative pore water pressure has a non-linear relationship with the water content changes. Soil-water characteristic curves of soil in Korea are not determined. There is no proper characteristic value such as air-entry value and residual water content. In this study, the characteristic curves of reclaimed soil, sand, and weathered granite soil were determined by laboratory tests. Air-entry value and residual water content were determined by fitting methods. Soil-water characteristic curves were estimated based on the particle-size distribution and compared with the laboratory test results. The results of soil-water characteristic curves estimation indicated that Fredlund and Wilson's model is excellent for sand and weathered granite soil. Arya and Paris's model is excellent for reclaimed soil.

  • PDF

Numerical study on the effect of crack network representation on water content in cracked soil

  • Krisnanto, Sugeng;Rahardjo, Harianto;Leong, Eng Choon
    • Geomechanics and Engineering
    • /
    • 제21권6호
    • /
    • pp.537-549
    • /
    • 2020
  • The presence of cracks changes the water content pattern during seepage through a cracked soil as compared to that of intact soil. In addition, several different crack networks may form in one soil type. These two factors result in a variation of water contents in the soil matrix part of a cracked soil during seepage. This paper presents an investigation of the effect of crack network representation on the water content of the soil matrix part of cracked soil using numerical models. A new method for the numerical generation of crack networks incorporating connections among crack endpoints was developed as part of the investigation. Numerical analysis results indicated that the difference in the point water content was large, whereas the difference in the average water content was relatively small, indicating the uniqueness of the crack network representation on the average water content of the soil matrix part of cracked soil.

토양특성 기반 토양수분 함량 예측을 위한 PTF 적용성 검정 (Verification on PTF (Pedo-Transfer Function) estimating soil water retention based on soil properties)

  • 허승오;손연규;현병근;신국식;오택근;김정규
    • 농업과학연구
    • /
    • 제41권4호
    • /
    • pp.391-398
    • /
    • 2014
  • Identifying soil water content as a major factor for evaluating irrigation and water resource is a primary module to develop a prediction model. A variety of PTFs (Pedo-Transfer Functions) are applied in the models to estimate soil water content, the analysis techniques, however, which compare the estimated from models and the measured by instruments, are not reached at the level to demonstrate the effectiveness of the PTFs in Korea. Many soil physicians such as Eom, Peterson, Rawls, Saxton, Bruand, Baties, Tomasella & Hodnett (T&H), and Minasny, have developed analytic models using PTFs. Soil data for the analysis used soil water contents on 347 soil series (10 kPa), 358 soil series (33 kPa), 356 soil series (1,500 kPa) established by NAAS (National Academy of Agricultural Science). A coefficient of determination on soil water content at 10, 33 and 1,500 kPa was the highest as 0.5932 in EM (Eom model), 0.6744 in REM (Rawls model) and 0.6108 in REM, respectively. In conclusion, it is strongly suggested that the use of EM or REM is suitable for estimating soil water content in Korea although SM (Saxton model) has been widely used.

Phenanthrene으로 오염된 불포화토양내에서 오존이동 모델링

  • 정해룡;배기진;최희철
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 추계학술발표회
    • /
    • pp.86-88
    • /
    • 2002
  • The mathematical model was proposed to simulate ozone transport and remediation in unsaturated soils contaminated with phenanthrene. Soil column experiments were also carried out to calibrate the mathematical model. The experimental results successfully matched with the modeling results in various soil conditions. The model proposed nondimensional fraction factor to reveal reactivity between phenanthrene and gas phase ozone and liquid phase ozone. From sensitivity analysis, the fraction factor and stoichiometric coefficient decreased as water content increased. Simulation results showed increased SOM content retarded the ozone transport and the phenanthrene removal due to increased ozone consumption.

  • PDF

풍화잔적토의 불포화전단강도 예측 및 특성연구 (Characteristics and Prediction of Shear Strength for Unsaturated Residual Soil)

  • 이인모;성상규;양일순
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.377-384
    • /
    • 2000
  • The characteristics and prediction model of the shear strength for unsaturated residual soils was studied. In order to investigate the influence of the initial water content on the shear strength, unsaturated triaxial tests were carried out varying the initial water content, and the applicability of existing prediction models for the unsaturated shear strength was testified. It was shown that the soil - water characteristic curve and the shear strength of the unsaturated soil varied with the change of the initial water content. A sample compacted in the lower initial water content needs a higher suction to get the same degree of saturation while the shear strength of a sample with the lower initial water content displays a lower value. In order to apply the existing prediction models of the unsaturated shear strength to granite residual soils, a correction coefficient, α, on the internal friction angle, ø'was added.

  • PDF

원추 관입형 임피던스 수분센서 개발을 위한 기초 연구 (Basic Study for Cone Penetrometer Type Soil Water Content Sensor using Impedance Spectroscopy)

  • 이동훈;이규승;정선옥
    • Journal of Biosystems Engineering
    • /
    • 제34권6호
    • /
    • pp.434-438
    • /
    • 2009
  • This study was conducted to design an cone penetrometer type impedance sensor that can measure soil water content in realtime. The best width between electrical probe was determined by 5 mm. For optimization about realtime application device, linear regression analysis was applied between soil water content and impedance signal. It was concluded that proper combination of excitation frequency, impedance parameter, and model would provide acceptible performance of a soil waler content sensoe. Best model was obatained at a 36.5 MHz with |Z| as a predictor variable, with a coefficient of determination of 0.96 (RMSE=1.35, RPD=4.98).

모세관 모델을 이용한 불포화토양의 물-가스 접촉면적 및 가스공극 크기분포의 계산 및 검증 (Capillary Bundle Model for the Estimation of Air-water Interfacial Area and the Gas-filled Pore Size Distribution in Unsaturated Soil)

  • 김헌기
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제26권1호
    • /
    • pp.1-7
    • /
    • 2021
  • Air-water interfacial area is of great importance for the analysis of contaminant mass transfer processes occurring in the soil systems. Capillary bundle model has been proposed to estimate the specific air-water interfacial areas in unsaturated soils. In this study, the measured air-water interfacial areas of a soil (loam) using the gaseous interfacial tracer technique were compared to those from capillary bundle model. The measured values converged to the specific solid surface area (7.6×104 ㎠/㎤) of the soil. However, the simulated air-water interfacial areas based on the capillary bundle model deviated significantly from those measured. The simulated values were substantially over-estimated at low end of the water content range, whereas the model under-estimated the air-water interfacial area for the most of the water content range. This under-estimation is considered to be caused by the nature of the capillary bundle model that replaces the soil pores with a bundle of glass capillaries and thus no surface roughness at the inner surface of the capillaries is taken into account for the estimation of the air-water interfacial area with the capillary bundle model. Subsequently, appropriate correction is necessary for the capillary bundle model to estimate the air-water interfacial area in soils. Since the soil-moisture release curve data is the basis of the capillary bundle model, the model can be of use due to its simplicity, while the gaseous tracer technique requires complicated experimental equipment followed by moment analysis of the breakthrough curves. The size distribution profile of the pores filled with gas estimated by the water retention curve was found to be similar to that of particle size at different size range. The shifted distribution of gas-filled pores toward smaller size side compared to the particle size distribution was also found.

초분광 근적외선 영상 기술을 이용한 흙의 함수비 측정 기술 (Soil Water Content Measurement Technology Using Hyperspectral Visible and Near-Infrared Imaging Technique)

  • 임환희;전에녹;이득환;전준서;이승래
    • 한국지반공학회논문집
    • /
    • 제35권11호
    • /
    • pp.51-62
    • /
    • 2019
  • 본 연구에서는 초분광 근적외선 영상을 이용하여 광역지역의 흙의 함수비 변화를 간편한 방법으로 예측하기 위해 수행되었다. 근적외선(VNIR) 영역대에서 변화되는 함수비 별로 모래, 화강풍화토(우면산, 구룡산, 대모산, 황령산), 카오리나이트를 초분광 카메라로 촬영하여 반사율을 추출하였고, 흙의 함수비와 가장 연관성 높은 매개변수를 찾기 위하여 선정된 매개변수와 함수비를 변수로하여 Partial Least Square Regression(PLSR) 분석을 이용하여 함수비 예측모델을 구축하였다. 함수비 예측모델을 구축한 결과, 흙의 종류에 관계없이 Area of reflectance(Near-infrared, NIR)의 매개변수가 흙의 함수비와 가장 연관성 높은 매개변수임을 확인하였고, 모든 흙에서 예측모델의 정확도(R2)는 0.9 이상임을 확인하였다. 또한 흙의 실제 함수비와 비교 검증해본 결과, 평균절대백분율(mean absolute percentage error, MAPE)이 15%이내로 확인되었다. 따라서 대상 흙들에서 50% 이내에서 변화되는 함수비 예측 가능성을 확인하였다. 본 연구를 통해 초분광 근적외선 영상을 이용하여 모래, 화강풍화토, 카오리나이트의 함수비 예측 가능성을 확인하였고, 모델의 정확도 개선 및 더 높은 범위의 함수비 예측을 위해서는 흙의 분류모델 개발이 추가적으로 필요하다고 판단된다.

구조모델을 이용한 다공성 매질의 유효열전도도 분석 (An Experimental Analysis of Effective Thermal Conductivity of Porous Materials Using Structural Models)

  • 차장환;구민호;김영석
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제15권6호
    • /
    • pp.91-98
    • /
    • 2010
  • The effective thermal conductivity of porous materials is usually determined by porosity, water content, and the conductivity of the matrix. In addition, it is also affected by the internal structure of the materials such as the size, arrangement, and connectivity of the matrix-forming grains. Based on the structural models for multi-phase materials, thermal conductivities of soils and sands measured with varying the water content were analyzed. Thermal conductivities of dry samples were likely to fall in the region between the Maxwell-Eucken model with air as the continuous phase and the matrix as the dispersed phase ($ME_{air}$) and the co-continuous (CC) model. However, water-saturated samples moved down to the region between the $ME_{wat}$ model and the series model. The predictive inconsistency of the structural models for dry and water-saturated samples may be caused by the increase of porosity for water-saturated samples, which leads to decrease of connectivity among the grains of matrix. In cases of variably saturated samples with a uniform grain size, the thermal conductivity showed progressive changes of the structural models from the $ME_{air}$ model to the $ME_{wat}$ model depending on the water content. Especially, an abrupt increase found in 0-20% of the water content, showing transition from the $ME_{air}$ model to the CC model, can be attributed to change of water from the dispersed to continuous phase. On the contrary, the undisturbed soil samples with various sizes of grains showed a gradual increase of conductivity during the transition from the $ME_{air}$ model to the CC model.

난지권 화산회토양의 토색별 토양수분 특성곡선 및 단일화 추정모형 (Estimation Model for Simplification and Validation of Soil Water Characteristics Curve on Volcanic Ash Soil in Subtropical Area in Korea)

  • 허승오;문경환;정강호;하상건;송관철;임한철;김정규
    • 한국토양비료학회지
    • /
    • 제39권6호
    • /
    • pp.329-333
    • /
    • 2006
  • 유기물 함량이 많은 난지권 제주도의 화산회 토양에서의 수분함량과 토양수분 장력과의 관계를 파악하는 것이 밭작물이 주로 재배되는 제주도 특성상 계획적인 관개관리를 통해 효율적인 물 관리를 가능하게 할 것이므로 이를 위해 본 연구는 토양수분 장력을 실측하지 않고 추정할 수 있도록 유기물 함량이 다른 토색별 토양수분특성곡선을 작성하고자 하였다. 유기물 함량에 차이가 많이 나는 세 가지 색의 토양을 이용해 토양수분 장력별로 토양수분 함량을 측정한 후 scaling 기법을 이용해 토양수분 특성곡선 추정모형을 작성했다. 암갈색, 농암갈색, 흑색으로 구분이 가능한 화산회 토양을 토색별로 살펴보면, 토성이 동일하더라도 유기물함량이 높은 화산회 토양일수록 토색이 진한 경향을 보여 토색에 미치는 유기물 함량의 영향을 판단할 수 있었다. 토색별 토양수분 특성곡선은 흑색토, 농암갈색토, 암갈색토의 순으로 수분 보유능의 차이를 보였으며, 이들도 scaling 기법을 통해 토양수분장력을 dimensionless water content의 멱함수 형태로 단일화 시킬 수 있었다. 또한, scale 변환 수분함량을 이용해 주로 토양수분 특성을 해석하는데 많이 이용되고 있는 van Genuchten 모형에 적용할 수 있는 매개변수들을 토양시료 전체에 대해, 그리고 각각의 토색별로 작성하였다. 이들 함수는 로지스틱(logistic) 형태를 보였다. 결과적으로 토양수분 곡선특성 추정모형은 수리특성의 기본이 되어 농경지에서의 물의 이동특성을 해석하는 밑바탕이 될 것이며, van Genuchten 변수들은 유기물 함량이 높은 지역에서 SWAT 등의 다양한 수문모형들에 적용이 가능할 것이다.