• Title/Summary/Keyword: Soil slope analysis

Search Result 898, Processing Time 0.03 seconds

Characteristics of Slope Failure Due to Local Downpour and Slope Stability Analysis with Changing Soil Depth and Groundwater Level (집중호우시 사면 붕괴의 특성 및 토층 심도와 지하수변동에 따른 사면 안정성 해석)

  • Baek Yong;Kwon O-Il;Kim Seong-Hyun;Koo Ho-Bon
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.57-66
    • /
    • 2005
  • The failure of cut slope and landslide sometimes come from a local downpour within a short duration in Korea. Especially, most of recent downpour converged upon a limited region and seemed the characteristics of guerilla. Characteristics of slopes failed due to local downpour are analyzed. failure mode is also analyzed with respect to the depth of soil layers and the change of groundwater level. To blow the influence factors of the slope stability during local downpour, the authors conducted field survey for failed slopes and tried to make a comparative study of 1,372 cut slope data distributed in the national road. FLAC-SLOPE(ITASCA Co.) is used to analyze slope stability with changing depth of soil layers and groundwater level. The result shows that the failed types of domestic slopes during local downpour are mainly shallow collapse and landslide. The change of soil depth and groundwater level have influenced on the stability of slopes.

Stability analysis of an unsaturated slope considering the suction stress (흡입응력을 고려한 불포화 사면의 안정해석법)

  • Song, Young-Suk;Lee, Nam-Woo;Hwang, Woong-Ki;Kim, Tae-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.764-771
    • /
    • 2010
  • The stability analysis method of an unsaturated slope considering the suction stress was performed on the infinite sand slope. During drying and wetting processes, the Soil-Water Characteristics Curve (SWCC) of the sand with the relative density of 75% was measured using the automated SWCC apparatus. Also, the Suction Stress Characteristics Curve (SSCC) was estimated. Based on these results, the stability analysis of an unsaturated infinite slope was carried out considering the slope angle, the weathering zone and the relative change in friction angle as a soil depth. According to the result of slope stability analysis, the safety factors of slope were less than 1 when the slope angles were more than $50^{\circ}$. The safety factors of slope tend to increase with increasing the depth from the ground surface. Especially, the safety factors have a tendency to increase and decrease above near the ground water level due to the suction stress. The maximum safety factor of slope in this analysis was occurred at the Air Entry Value (AEV) of drying process. The influence range of suction stress above the ground water level can be found out and can be defined as the funicular zone which means the metric suction range from the air entry point to the point of residual volumetric water content.

  • PDF

Stability charts and reinforcement with piles in 3D nonhomogeneous and anisotropic soil slope

  • Xu, Jingshu;Li, Yongxin;Yang, Xiaoli
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.71-81
    • /
    • 2018
  • Soils are mostly nonhomogeneous and anisotropic in nature. In this study, nonhomogeneity and anisotropy of soil are taken into consideration by assuming that the cohesion increases with depth linearly and also varies with respect to direction at a particular point. A three-dimensional rotational failure mechanism is adopted, and then a three-dimensional stability analysis of slope is carried out with the failure surface in the shape of a curvilinear cone in virtue of the limit analysis method. A quasistatic approach is used to develop stability charts in nonhomogeneous and anisotropic soils. One can easily read the safety factors from the charts without the need for iterative procedures for safety factors calculation. The charts are of practical importance to prevent a plane failure in excavation slope whether it is physically constrained or not. Then the most suitable location of piles within the reinforced slope in nonhomogeneous and anisotropic soils is explored, as well as the interactions of nonhomogeneous and anisotropic coefficients on pile reinforcement effects. The results indicate that piles are more effective when they are located between the middle and the crest of the slope, and the nonhomogeneous coefficient as well as the anisotropic coefficient will not only influence the most suitable location for piles but also affect the calculated safety factor of existing reinforced slope. In addition, the two coefficients will interact with each other on the effect on slope reinforcement.

Coupled Effect of Soil Nail/Slope Systems (쏘일네일-사면의 상호작용 효과)

  • Jeong Sang Seom;Lee Jin Hyung;Lee Sun Keun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.127-135
    • /
    • 2005
  • In this paper, a numerical comparison of predictions by limit equilibrium analysis and finite difference analysis is presented for slope/soil-nail system. Special attention is given to the coupled analysis based on the explicit-finite-difference code, FLAC 2D. To this end, an internal routine (FISH) was developed to calculate a factor of safety for a soil nail slope according to shear strength reduction method. The case of coupled analyses was performed for soil nails in slope in which the soil nails response and slope stability are considered simultaneously. In this study, by using these methods, the failure surfaces and factors of safety were compared and analyzed in several cases, such as toe, middle and top of the slope, respectively. Furthermore, the coupled method based on shear strength reduction method was verified by the comparison with other analysis results.

Reinforced Earth Retaining Wall of The Collapsed-A Case Study. (보강토옹벽의 사고사례에 관한 연구)

  • Yoo, Chung-Sik;Jung, Hyuk-Sang;Lee, Soung-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.958-967
    • /
    • 2004
  • This paper deal with cause and analysis about case of collapsed reinforced-soil retaining wall. The analysis of the cause was carried through experimentation, slop stability analysis and literature study. The experimentation treated the large direct shear test, the hydraulic conductivity test and the other basic test through backfill extracted from collapsed reinforced-soil retaining wall. The ultimate tensile strength was established by rib tensile strength test of geogrid. The analysis of internal and external stability of reinforced-soil retaining wall was performed on the basis of parameters. The result of analysis, reinforced-soil retaining wall and the slope at the dry season are stable. However, the factors that fine-grained soil at hydrometer test exceed the standard of the design, rainfall duration is too long at the time of collapse and monthly pricipitation is heavy are cause of the collapse.

  • PDF

Application of UAV images for rainfall-induced slope stability analysis in urban areas

  • Dohyun Kim;Junyoung Ko;Jaehong Kim
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.167-174
    • /
    • 2023
  • This study evaluated slope stability through a case study to determine the disaster risks associated with increased deforestation in structures, including schools and apartments, located in urban areas adjacent to slopes. The slope behind the ○○ High School in Gwangju, Korea, collapsed owing to heavy rain in August 2018. Historically, rainwater drained well around the slope during the rainy season. However, during the collapse, a large amount of seepage water flowed out of the slope surface and a shallow failure occurred along the saturated soil layer. To analyze the cause of the collapse, the images of the upper area of the slope, which could not be directly identified, were captured using unmanned aerial vehicles (UAVs). A digital elevation model of the slope was constructed through image analysis, making it possible to calculate the rainfall flow direction and the area, width, and length of logging areas. The change in the instability of the slope over time owing to rainfall lasting ten days before the collapse was analyzed through numerical analysis. Imaging techniques based on the UAV images were found to be effective in analyzing ground disaster risk maps in urban areas. Furthermore, the analysis was found to predict the failure before its actual occurrence.

Analysis of Factors Affecting Hiking Trails by Logistic Regression Analysis: Focus on Golupogisan~Saenggyelyeong (로지스틱회귀분석을 이용한 등산로 훼손요인 분석: 고루포기산~생계령 대상으로)

  • Choi, Taeheon;Kim, Joonsoon
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.4
    • /
    • pp.478-485
    • /
    • 2018
  • The study was carried out to select natural environmental factors that affect damage to hiking paths and to provide directions for facility management of hiking paths by a logistic regression analysis. The study sites is a total of 123 sample sites that located in the Baekdudaegan Guropo-Gisaengnyeong hiking trails. The variables used in the analysis model included mountain trail damage, forest type, herb of soil and crown density obtained through a field survey and included slope, soil and rock exposure obtained through FGIS. A logistic regression analysis of 43 sites and 80 undeveloped sites, 4 elements were selected for slope, herb of soil, soil and rock exposure. The slope and the herb of soil were positively correlated and the exposure of rock was negative. Soil has shown a positive correlation with its low missile and high sand ratio Saturn. Therefore, the management of the mountain hiking paths facilities should be established and restored considering the slope, herb of soil, soil and rock exposure.

A Study to Develop a Practical Probabilistic Slope Stability Analysis Method (실용적인 확률론적 사면안정 해석 기법 개발)

  • 김형배;이승호
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.271-280
    • /
    • 2002
  • A probabilistic approach to identify the effects of uncertainties of soil strength parameters on searching a critical slip surface with the lowest reliability is introduced. In general construction field, it is impossible for the engineer to always gather a variety of statistical information of soil strength parameters for which lots of laboratory and in-situ soil testing are required and to use it with enough statistical knowledge. Thus, in order that the engineer may easily understand the probabilistic concept for the slope stability analysis, this study proposes a combined procedure to incorporate the engineering probabilistic tools into the existing deterministic slope stability analysis methods. Using UTEXAS 3, a slope stability analysis computer program developed by U.S. Army Corps of Engineers (U.S. COE), this study provides the results of this probabilistic slope stability analysis in terms of probability of failure or reliability index. This probabilistic method f3r slope stability analysis appears to yield more comprehensive results of slope reliability than does existing deterministic methods with safety factors alone.

A Study of Limit State Design Method in Soil Slope (토사면의 한계상태 설계법에 관한 연구)

  • Joung, Gi-Hun;Kim, Jong-Min;Jang, Bum-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.129-136
    • /
    • 2005
  • The deterministic analysis method has generally used to evaluate the slope stability and it evaluates the slope stability with decision value that is a representative value of design variables. However, one of disadvantages in the deterministic approach is there is not able to consider the uncertainty of soil strength properties, even though it is the biggest influential parameter of the slope stability. On the other hand, the limit state design(LSD) can take a consideration of uncertainties and computes both the reliability index and the probability of failure. LSD method is capable of overcoming the disadvantages of deterministic method and evaluating the slope stability more reliably. In this study, both the mean value and standard deviation of the internal land's representative soil strength properties applied to process the LSD method. The major purpose of this study is to gauge the general applicability of the limit state design in soil slope and to weigh the comparative validity of the proposed partial safety factor. In order to reach the aim of this study, the partial safety factor and resistance factor which totally satisfied the slope's overall safety factor were calculated by the load and resistance safety factor design (LRFD).

  • PDF

GIS based Infinite slope stability analysis : case study of boeun area (GIS를 활용한 무한사면 안정성 해석 기법 연구)

  • 이연희;정영국;박혁진;이사로;장범수;전귀현
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.475-480
    • /
    • 2003
  • Traditionally, the statistical methods analyze the relationship between landslide occurrence and related factors(soil depth, soil strength, slope angle, vegetation, etc.) in GIS technique. However, those methods have no mechanical meaning. Therefore, the deterministic model is suggested in this research. The method analyzes the mechanical equilibrium of a potential slide block and then calculates a slope safety factor. Since this method is able to consider the balance of forces applied to the slope and is a more reasonable method for an individual site. In this research, the spatial data is obtained, managed and analyzed using GIS technique. The infinite slope model is used to evaluate factor of safety and analyze the slope stability.

  • PDF