• 제목/요약/키워드: Soil sampling

검색결과 575건 처리시간 0.031초

석유계총탄화수소의 위해성평가 시 적정 분획 시료수 결정에 대한 고찰 (Study on the Soil Sample Number of Total Petroleum Hydrocarbons Fractionation for Risk Assessment in Contaminated Site)

  • 전인형;김상현;정현용;정부윤;노회정;김현구;남경필
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제24권5호
    • /
    • pp.11-16
    • /
    • 2019
  • In this study, a reliable number of soil samples for TPH fractionation was investigated in order to perform risk assessment. TPH was fractionated into volatile petroleum hydrocarbons (VPH) with three subgroups and extractable petroleum hydrocarbons (EPH) with four subgroups. At the study site, concentrations of each fraction were determined at 18 sampling points, and the 95% upper confidence limit (UCL) value was used as an exposure concentration of each fraction. And then, 5 sampling points were randomly selected out of the 18 points, and an exposure concentration was calculated. This process was repeated 30 times, and the results were compared statistically. Exposure concentrations of EPH obtained from 18 points were 99.9, 339.1, 27.3, and 85.9 mg/kg for aliphatic $C_9-C_{18}$, $C_{19}-C_{36}$, $C_{37}-C_{40}$, and aromatic $C_{11}-C_{22}$, respectively. The corresponding exposure concentrations obtained from 5 points were 139.8, 462.8, 35.1 and 119.4 mg/kg, which were significantly higher than those from 18 points results (p <0.05). Our results suggest that limited number of samples for TPH fractionation may bias estimation of exposure concentration of TPH fractions. Also, it is recommended that more than 30 samples need to be analyzed for TPH fractionation in performing risk assessment.

SMAP 토양수분을 위한 Landsat 기반 상세화 기법 개발 (Development of Landsat-based Downscaling Algorithm for SMAP Soil Moisture Footprints)

  • 이태화;김상우;신용철
    • 한국농공학회논문집
    • /
    • 제60권4호
    • /
    • pp.49-54
    • /
    • 2018
  • With increasing satellite-based RS(Remotely Sensed) techniques, RS soil moisture footprints have been providing for various purposes at the spatio-temporal scales in hydrology, agriculture, etc. However, their coarse resolutions still limit the applicability of RS soil moisture to field regions. To overcome these drawbacks, the LDA(Landsat-based Downscaling Algorithm) was developed to downscale RS soil moisture footprints from the coarse- to finer-scales. LDA estimates Landsat-based soil moisture($30m{\times}30m$) values in a spatial domain, and then the weighting values based on the Landsat-based soil moisture estimates were derived at the finer-scale. Then, the coarse-scale RS soil moisture footprints can be downscaled based on the derived weighting values. The LW21(Little Washita) site in Oklahoma(USA) was selected to validate the LDA scheme. In-situ soil moisture data measured at the multiple sampling locations that can reprent the airborne sensing ESTAR(Electronically Scanned Thinned Array Radiometer, $800m{\times}800m$) scale were available at the LW21 site. LDA downscaled the ESTAR soil moisture products, and the downscaled values were validated with the in-situ measurements. The soil moisture values downscaled from ESTAR were identified well with the in-situ measurements, although uncertainties exist. Furthermore, the SMAP(Soil Moisture Active & Passive, $9km{\times}9km$) soil moisture products were downscaled by the LDA. Although the validation works have limitations at the SMAP scale, the downscaled soil moisture values can represent the land surface condition. Thus, the LDA scheme can downscale RS soil moisture products with easy application and be helpful for efficient water management plans in hydrology, agriculture, environment, etc. at field regions.

Physical and Chemical Characteristics of Dokdo Soil

  • Lee, Gil-Seong;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • 제32권4호
    • /
    • pp.295-304
    • /
    • 2009
  • To understand the properties of soil in Dokdo, we collected soil samples from 12 locations on Seodo and 23 locations on Dongdo, in Dokdo of Gyeongsangbuk-do Province in 2007-2008 and analyzed the soil's physical and chemical characteristics. Sand comprises the largest component (49.37%) of Dokdo soil, followed by silt (40.70%) and clay (9.93%). The soil structure consists mostly of sand loam, followed by loam and silt loam. The pH level of soils from Dokdo varied dramatically among sampling sites and seasons, ranging from 3.36 to 8.02. The total ion content of Dokdo soil also varies greatly among survey places and periods, but in general the total ion content was high in summer when vegetation develops, and low in spring. The exchangeable cation contents of the soil showed low levels in samples where the soil pH was low, including habitats dominated by Agropyron tsukushiense var. transiens and Echinochloa crus-galli, whereas the exchangeable cation contents were high where the organic contents were high, as in habitats dominated by Liriope platyphylla and Artemisia japonica subsp. littoricola. Soil N contents varied greatly among survey sites and higher N contents were found in soil inhabited by Chenopodiaceous plants than in habitats inhabited by other plants. The substantial differences in phosphorus contents among sites were related to excrement of black-tailed gulls. To understand the basic physical and chemical features of the soil on Dokdo, it will be necessary to conduct seasonal and long-term research on soil pH, ion contents, organic contents, N and P, as well as obtaining precise data from samples collected at different depths.

Status and changes in physico-chemical properties of soil in Chungcheongnam-do

  • Yun-Gu Kang;Sung-Jin Park;Jae-Han Lee;Jin-Hyuk Chun;Jun-Young Lee;Taek-Keun Oh
    • 농업과학연구
    • /
    • 제49권2호
    • /
    • pp.239-247
    • /
    • 2022
  • The physico-chemical properties of agricultural soil are factors that affect crop productivity and soil fertility. In Korea, agricultural environment change surveys have been conducted every four years since 1999. The purpose of this study is to investigate the status and changes in the physico-chemical properties of agricultural soil in Chungcheongnam-do. Samples were collected from the exact location of the aforementioned environment survey, and environmental variables (land use, type of crop cultivated) were investigated in relation to the samples. Soil collection was conducted using a core sampler and a single gouge auger. The bulk density of the soil generally increased up to a depth of sampling of 40 cm but decreased thereafter to a depth of 60 cm. Additionally, the bulk density was highest in the upland soil case and stood at 1.59 g·cm-3, while the lowest value of 1.52 g·cm-3 was obtained from orchard soil samples. Conversely, the porosity and moisture gradually decreased at soil depths of 0 - 40 cm and increased at depths of 40 - 60 cm. Most of the soil chemical properties generally decreased with an increase the soil depth from 0 to 70 cm, but electrical conductivity (EC) increased up to a depth of 40 cm. Therefore, it is judged that it is necessary to lower the bulk density by supplying organic matter for agricultural land in Chungcheongnam-do.

Spatio-Temporal Variation of Soil Respiration and Its Association with Environmental Factors in Bluepine Forest of Western Bhutan

  • Cheten Thinley;Baghat Suberi;Rekha Chhetri
    • Journal of Forest and Environmental Science
    • /
    • 제39권1호
    • /
    • pp.13-19
    • /
    • 2023
  • We investigated Soil respiration in Bluepine forest of western Bhutan, in relation to soil temperature, moisture content and soil pH and it was aimed at establishing variability in space and time. The Bluepine forest thrives in the typical shallow dry valleys in the inter-montane Bhutan Himalaya, which is formed by ascending wind from the valley bottom, which carries moisture from the river away to the mountain ridges. Stratified random sampling was applied and the study site was classified into top, mid, low slope and further randomized sample of n=20 from 30 m×30 m from each altitude. The overall soil respiration mean for the forest was found 2248.17 CO2 g yr-1 and it is ~613.58 C g yr-1. The RS from three sites showed a marginal variation amongst sites, lower slope (2,309 m) was 4.64 μ mol m-2 s-1, mid slope (2,631 m) was 6.78 μ mol m-2 s-1 and top slope (3,027 m) was 6.33 μ mol m-2 s-1 and mean of 5.92 μ mol m-2 s-1, SE=0.25 for the forest. Temporal distribution and variations were observed more pronounced than in the space variation. Soil respiration was found highest during March and lowest in September. Soil temperature had almost inverse trend against soil respiration and dropped a low in February and peak in July. The moisture in the soil changed across months with precipitation and pH remained almost consistent across the period. The soil respiration and soil temperature had significant relationship R2=-0.61, p=0.027 and other variables were found insignificant. Similar relationship are reported for dry season in a tropical forest soil respiration. Soil temperature was found to have most pronounced effect on the soil respiration of the forest under study.

RUSLE 모델에 의한 군사격장 피탄지 토양유실량 평가: 토양 유실과 오염 화약물질 이동 상관성 (Assessment of Soil Loss at Military Shooting Range by RUSLE Model: Correlation Between Soil Loss and Migration of Explosive Compounds)

  • 공효영;이광표;이종열;김범준;이아름;배범한;김지연
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권6호
    • /
    • pp.119-128
    • /
    • 2012
  • The applicability and accuracy of Revised Universal Soil Loss Equation (RUSLE) model on the estimation of soil loss at impacted area of shooting range was tested to further the understanding of soil erosion at shooting ranges by using RUSLE. At a shooting range located in northern Kyunggi, the amount of soil loss was estimated by RUSLE model and compared with that estimated by Global Positioning System-Total Station survey. As results, the annual soil loss at a study site (202 m long by 79 m wide) was estimated to be 2,915 ton/ha/year by RUSLE and 3,058 ton/ha/year by GPS-TS survey, respectively. The error between two different estimations was less than 5%, however, information on site conditions should be collected more to adjust model coefficients accurately. At the study shooting range, sediments generated by rainfall was transported from the top to near the bottom of the sloping face through sheet erosion as well as rill erosion, forming a gully along the direction of the storm water flow. Coarser fractions of the sediments were redeposited in the limited area along the channel. Distribution characteristics of explosive compounds in soil before and after summer monsoon rainfall in the study area were compared with the erosion patterns. Soil sampling and analyses results showed that the dispersion of explosive compounds in surface soil was consistent with the characteristics of soil erosion and redeposition pattern of sediment movements after rainfalls.

Plant co-occurrence patterns and soil environments associated with three dominant plants in the Arctic

  • Deokjoo Son
    • Journal of Ecology and Environment
    • /
    • 제47권1호
    • /
    • pp.1-13
    • /
    • 2023
  • Background: The positive effects of Arctic plants on the soil environment and plant-species co-occurrence patterns are known to be particularly important in physically harsh environments. Although three dominant plants (Cassiope tetragona, Dryas octopetala, and Silene acaulis) are abundant in the Arctic ecosystem at Ny-Ålesund, Svalbard, few studies have examined their occurrence patterns with other species and their buffering effect on soil-temperature and soil-moisture fluctuation. To quantify the plant-species co-occurrence patterns and their positive effects on soil environments, I surveyed the vegetation cover, analyzed the soil-chemical properties (total carbon, total nitrogen, pH, and soil organic matter) from 101 open plots, and measured the daily soil-temperature and soil-moisture content under three dominant plant patches and bare soil. Results: The Cassiope tetragona and Dryas octopetala communities increased the soil-temperature stability; however, the three dominant plant communities did not significantly affect the soil-moisture stability. Non-metric multidimensional scaling separated the sampling sites into three groups based on the different vegetation compositions. The three dominant plants occurred randomly with other species; however, the vegetation composition of two positive co-occurring species pairs (Oxyria digyna-Cerastium acrticum and Luzula confusa-Salix polaris) was examined. The plant species richness did not significantly differ in the three plant communities. Conclusions: The three plant communities showed distinctive vegetation compositions; however, the three dominant plants were randomly and widely distributed throughout the study sites. Although the facilitative effects of the three Arctic plants on increases in the soil-moisture fluctuation and richness were not quantified, this research enables a deeper understanding of plant co-occurrence patterns in Arctic ecosystems and thereby contributes to predicting the shift in vegetation composition and coexistence in response to climate warming. This research highlights the need to better understand plant-plant interactions within tundra communities.

유기농 토양의 화학적 특성 및 미생물상 연구 (Study on Characteristics of Chemical Properties and Microbial Flora of Organic Farming Soil in Korea)

  • 박광래;스가 유코;홍승길;이초롱;안민실;김석철;하시모토 토모요시
    • 유기물자원화
    • /
    • 제24권4호
    • /
    • pp.77-83
    • /
    • 2016
  • 유기농 밭 토양의 특성을 파악하기 위해 유기농 인증을 받은 국내 15개 선도 농가를 선정하고, 밭 토양의 시료를 채취하여 유기농 인증토양에 대한 토양 이화학성 및 미생물상 조사를 실시하였다. 토양 이화학성중 pH는 4.9~7.3의 범위에서 변동하였다. 대부분의 작물은 6.0~7.0의 범위를 나타냈지만, 전남의 양파와 고구마 재배토양은 pH 4.5, 5.8의 산성을 나타내었으며, 경기의 마늘과 고추 그리고 전북의 대두 재배토양에서는 pH 7.2~7.3을 나타냈다. 이러한 토양의 알칼리화는 시용 자재에 의한 것으로 추정되었다. EC는 대부분의 조사 지역에서 관행 토양의 기준인 2 dS/m 보다 낮은 값을 보였지만, 일부 배추와 고구마 재배 토양에서는 3.9과 3.7을 나타냈다. 유효태 인산 함량은 재배 작물의 종류에 따라 크게 달라 관행 토양의 기준인 $300{\sim}500mg\;kg^{-1}$에서 크게 벗어난 $300{\sim}1,894mg\;kg^{-1}$을 나타내었다. 이것은 유기 재배 토양에는 화학 비료 대신 가축분 퇴비를 대량으로 시용하기 때문으로 추정되었다. 미생물 군집 구조 분석은 세균의 16S rDNA 및 사상균의 18S rDNA의 PCR-DGGE 분석을 실시하였다. DGGE 패턴에 기반 클러스터 분석 결과, 재배경력에 따라 5년 이하와 5년 이상으로 구분되어 재배이력이 길어질수록 토양 세균 군집이 차별화 되어 장기 유기농경지의 토양 특성 구분이 가능하였으나 사상균의 경우는 재배이력 및 지역별로 일정한 경향이 나타나지 않았다. 따라서, 유기농경지의 미생물적 특성을 구분할 때 5년 이상된 장기재배 토양을 대상으로 세균의 군집분석을 실시하는 것이 매우 효과적일 것으로 판단된다.

Distribution of natural radioactivity in soil and date palm-pits using high purity germanium radiation detectors and LB-alpha/beta gas-flow counter in Saudi Arabia

  • Shayeb, Mohammad Abu;Baloch, Muzahir Ali
    • Nuclear Engineering and Technology
    • /
    • 제52권6호
    • /
    • pp.1282-1288
    • /
    • 2020
  • In the first study, the Radon emanation and radiological hazards associated with radionuclides in soil samples, collected from 9 various date palm farms located in 3 different districts in Saudi Arabia were determined through a high purity Germanium (HPGe) gamma-ray spectrometer. The estimated average values of Radon emanation coefficient and Radon mass exhalation rate for soil samples were 0.535 ± 0.016 and 50.063 ± 7.901 mBqkg-1h-1, respectively. The annual effective dose of radionuclides in all sampling locations was found to be lower than UNSCEAR's recommended level of 0.07 mSvy-1 for soil in an outdoor environment. In the secondary study, gross α and gross β activities in soil and date palm pits samples were measured by a low background α/β counting system. Average values of gross α and gross β activities in soil and date palm pits samples were 5.761 ± 0.360 Bqkg-1, 38.219 ± 8.619 Bqkg-1 and 0.556 ± 0.142 Bqkg-1, 24.266 ± 1.711 Bqkg-1, respectively.