DOI QR코드

DOI QR Code

Plant co-occurrence patterns and soil environments associated with three dominant plants in the Arctic

  • Deokjoo Son (Department of Science Education, Dankook University)
  • Received : 2023.01.06
  • Accepted : 2023.01.19
  • Published : 2023.03.31

Abstract

Background: The positive effects of Arctic plants on the soil environment and plant-species co-occurrence patterns are known to be particularly important in physically harsh environments. Although three dominant plants (Cassiope tetragona, Dryas octopetala, and Silene acaulis) are abundant in the Arctic ecosystem at Ny-Ålesund, Svalbard, few studies have examined their occurrence patterns with other species and their buffering effect on soil-temperature and soil-moisture fluctuation. To quantify the plant-species co-occurrence patterns and their positive effects on soil environments, I surveyed the vegetation cover, analyzed the soil-chemical properties (total carbon, total nitrogen, pH, and soil organic matter) from 101 open plots, and measured the daily soil-temperature and soil-moisture content under three dominant plant patches and bare soil. Results: The Cassiope tetragona and Dryas octopetala communities increased the soil-temperature stability; however, the three dominant plant communities did not significantly affect the soil-moisture stability. Non-metric multidimensional scaling separated the sampling sites into three groups based on the different vegetation compositions. The three dominant plants occurred randomly with other species; however, the vegetation composition of two positive co-occurring species pairs (Oxyria digyna-Cerastium acrticum and Luzula confusa-Salix polaris) was examined. The plant species richness did not significantly differ in the three plant communities. Conclusions: The three plant communities showed distinctive vegetation compositions; however, the three dominant plants were randomly and widely distributed throughout the study sites. Although the facilitative effects of the three Arctic plants on increases in the soil-moisture fluctuation and richness were not quantified, this research enables a deeper understanding of plant co-occurrence patterns in Arctic ecosystems and thereby contributes to predicting the shift in vegetation composition and coexistence in response to climate warming. This research highlights the need to better understand plant-plant interactions within tundra communities.

Keywords

Acknowledgement

I especially thank Eun Ju Lee (Seoul National University) and Saeromi Mun (National Institute of Ecology) for the support to this paper. I also thank the anonymous reviewers.

References

  1. Achat DL, Augusto L, Gallet-Budynek A, Bakker MR. Drying-induced changes in phosphorus status of soils with contrasting soil organic matter contents - implications for laboratory approaches. Geoderma. 2012;187-188:41-8. https://doi.org/10.1016/j.geoderma.2012.04.014.
  2. Angers-Blondin S, Myers-Smith IH, Boudreau S. Plant-plant interactions could limit recruitment and range expansion of tall shrubs into alpine and Arctic tundra. Polar Biol. 2018;41(11):2211-9. https://doi.org/10.1007/s00300-018-2355-9.
  3. Anthelme F, Cavieres LA, Dangles O. Facilitation among plants in alpine environments in the face of climate change. Front Plant Sci. 2014;5:387. https://doi.org/10.3389/fpls.2014.00387.
  4. Antonsson H, Bjork RG, Molau U. Nurse plant effect of the cushion plant Silene acaulis (L.) Jacq. in an alpine environment in the subarctic Scandes, Sweden. Plant Ecol Divers. 2009;2(1):17-25. https://doi.org/10.1080/17550870902926504.
  5. Badano EI, Jones CG, Cavieres LA, Wright JP. Assessing impacts of ecosystem engineers on community organization: a general approach illustrated by effects of a high-Andean cushion plant. Oikos. 2006;115(2):369-85. https://doi.org/10.1111/j.2006.0030-1299.15132.x.
  6. Bardgett RD, Streeter TC, Bol R. Soil microbes compete effectively with plants for organic-nitrogen inputs to temperate grasslands. Ecology. 2003;84(5):1277-87. https://doi.org/10.1890/0012-9658(2003)084[1277:SMCEWP]2.0.CO;2.
  7. Bhatt US, Walker DA, Raynolds MK, Comiso JC, Epstein HE, Jia G, et al. Circumpolar arctic tundra vegetation change is linked to sea ice decline. Earth Interact. 2010;14(8):1-20. https://doi.org/10.1175/2010EI315.1.
  8. Blaud A, Lerch TZ, Phoenix GK, Osborn AM. Arctic soil microbial diversity in a changing world. Res Microbiol. 2015;166(10):796-813. https://doi.org/10.1016/j.resmic.2015.07.013.
  9. Bonanomi G, Stinca A, Chirico GB, Ciaschetti G, Saracino A, Incerti G. Cushion plant morphology controls biogenic capability and facilitation effects of Silene acaulis along an elevation gradient. Funct Ecol. 2016;30(7):1216-26. https://doi.org/10.1111/1365-2435.12596.
  10. Boulanger-Lapointe N, Levesque E, Baittinger C, Schmidt NM. Local variability in growth and reproduction of Salix arctica in the high arctic. Polar Res. 2016;35:24126. https://doi.org/10.3402/polar.v35.24126.
  11. Brazeau HA, Schamp BS. Examining the link between competition and negative co-occurrence patterns. Oikos. 2019;128(9):1358-66. https://doi.org/10.1111/oik.06054.
  12. Bruno JF, Stachowicz JJ, Bertness MD. Inclusion of facilitation into ecological theory. Trends Ecol Evol. 2003;18(3):119-25. https://doi.org/10.1016/S0169-5347(02)00045-9.
  13. Buus-Hinkler J, Hansen BU, Tamstorf MP, Pedersen SB. Snow-vegetation relations in a High Arctic ecosystem: inter-annual variability inferred from new monitoring and modeling concepts. Remote Sens Environ. 2006;105(3):237-47. https://doi.org/10.1016/j.rse.2006.06.016.
  14. Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, et al. Positive interactions among alpine plants increase with stress. Nature. 2002;417(6891):844-8. https://doi.org/10.1038/nature00812.
  15. Callaway RM, Walker LR. Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology. 1997;78(7):1958-65. https://doi.org/10.1890/0012-9658(1997)078[1958:CAFASA]2.0.CO;2.
  16. Cannone N, Guglielmin M, Gerdol R. Relationships between vegetation patterns and periglacial landforms in northwestern Svalbard. Polar Biol. 2004;27(9):562-71. https://doi.org/10.1007/s00300-004-0622-4.
  17. Carlsson BA, Callaghan TV. Positive plant interactions in tundra vegetation and the importance of shelter. J Ecol. 1991;79(4):973-83. https://doi.org/10.2307/2261092.
  18. Castro J, Zamora R, Hodar JA, Gomez JM. Use of shrubs as nurse plants: a new technique for reforestation in mediterranean mountains. Restor Ecol. 2002;10(2):297-305. https://doi.org/10.1046/j.1526-100X.2002.01022.x.
  19. Cavieres LA, Badano EI, Sierra-Almeida A, Gomez-Gonzalez S, Molina-Montenegro MA. Positive interactions between alpine plant species and the nurse cushion plant Laretia acaulis do not increase with elevation in the Andes of central Chile. New Phytol. 2006;169(1):59-69. https://doi.org/10.1111/j.1469-8137.2005.01573.x.
  20. Cavieres LA, Badano EI, Sierra-Almeida A, Molina-Montenegro MA. Microclimatic Modifications of cushion plants and their consequences for seedling survival of native and non-native herbaceous species in the High Andes of Central Chile. Arct Antarct Alp Res. 2007; 39(2):229-36. https://doi.org/10.1657/1523-0430(2007)39[229:MMOCPA]2.0.CO;2.
  21. Cavieres LA, Brooker RW, Butterfield BJ, Cook BJ, Kikvidze Z, Lortie CJ, et al. Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecol Lett. 2014;17(2):193-202. https://doi.org/10.1111/ele.12217.
  22. Cavieres LA, Quiroz CL, Molina-Montenegro MA, Munoz AA, Pauchard A. Nurse effect of the native cushion plant Azorella monantha on the invasive non-native Taraxacum officinale in the high-Andes of central Chile. Perspect Plant Ecol Evol Syst. 2005;7(3):217-26. https://doi.org/10.1016/j.ppees.2005.09.002.
  23. Chae N, Kang H, Kim Y, Hong SG, Lee BY, Choi T. CO2 efflux from the biological soil crusts of the High Arctic in a later stage of primary succession after deglaciation, Ny-Alesund, Svalbard, Norway. Appl Soil Ecol. 2016;98:92-102. https://doi.org/10.1016/j.apsoil.2015.09.013.
  24. Chapin FS, Walker LR, Fastie CL, Sharman LC. Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol Monogr. 1994;64(2):149-175. https://doi.org/10.2307/2937039.
  25. Chen J, Yang Y, Stocklin J, Cavieres LA, Peng D, Li Z, et al. Soil nutrient availability determines the facilitative effects of cushion plants on other plant species at high elevations in the south-eastern Himalayas. Plant Ecol Divers. 2015;8(2):199-210. https://doi.org/10.1080/17550874.2013.872206.
  26. Cooper EJ, Dullinger S, Semenchuk P. Late snowmelt delays plant development and results in lower reproductive success in the High Arctic. Plant Sci. 2011;180(1):157-67. https://doi.org/10.1016/j.plantsci.2010.09.005.
  27. Cooper EJ, Wookey PA. Floral herbivory of dryas octopetala by Svalbard reindeer. Arct Antarct Alp Res. 2003;35(3):369-76. https://doi.org/10.1657/1523-0430(2003)035[0369:FHODOB]2.0.CO;2.
  28. Cooper EJ. Reindeer grazing reduces seed and propagule bank in the High Arctic. Can J Bot. 2006;84(11):1740-52. https://doi.org/10.1139/b06-127.
  29. Curran TJ, Reid EM, Skorik C. Effects of a severe frost on riparian rainforest restoration in the Australian wet tropics: foliage retention by species and the role of forest shelter. Restor Ecol. 2010;18(4):408-13. https://doi.org/10.1111/j.1526-100X.2010.00688.x.
  30. Davey M, Blaalid R, Vik U, Carlsen T, Kauserud H, Eidesen PB. Primary succession of Bistorta vivipara (L.) Delabre (Polygonaceae) root-associated fungi mirrors plant succession in two glacial chronosequences. Environ Microbiol. 2015;17(8):2777-90. https://doi.org/10.1111/1462-2920.12770.
  31. De Deyn GB, Cornelissen JH, Bardgett RD. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett. 2008;11(5):516-31. https://doi.org/10.1111/j.1461-0248.2008.01164.x.
  32. Dowdall M, Vicat K, Frearson I, Gerland S, Lind B, Shaw G. Assessment of the radiological impacts of historical coal mining operations on the environment of Ny-Alesund, Svalbard. J Environ Radioact. 2004;71(2):101-14. https://doi.org/10.1016/S0265-931X(03)00144-9.
  33. Gavini SS, Ezcurra C, Aizen MA. Patch-level facilitation fosters high-Andean plant diversity at regional scales. J Veg Sci. 2020;31(6):1133-43. https://doi.org/10.1111/jvs.12922.
  34. Gotzenberger L, de Bello F, Brathen KA, Davison J, Dubuis A, Guisan A, et al. Ecological assembly rules in plant communities--approaches, patterns and prospects. Biol Rev Camb Philos Soc. 2012;87(1):111-27. https://doi.org/10.1111/j.1469-185X.2011.00187.x.
  35. Gouws CA, Haussmann NS, le Roux PC. Seed trapping or a nurse effect? Disentangling the drivers of fine-scale plant species association patterns in a windy environment. Polar Biol. 2021;44(8):1619-28. https://doi.org/10.1007/s00300-021-02898-1.
  36. Grau O, Ninot JM, Perez-Haase A, Callaghan TV. Plant co-existence patterns and High-Arctic vegetation composition in three common plant communities in north-east Greenland. Polar Res. 2014;33:19235. https://doi.org/10.3402/polar.v33.19235.
  37. Griffith DM, Veech JA, Marsh CJ. cooccur: probabilistic species co-occurrence analysis in R. J Stat Softw. 2016;69(2):1-17. https://doi.org/10.18637/jss.v069.c02.
  38. Gu Y, You Y, Thrush S, Brustolin M, Liu Y, Tian S, et al. Responses of the macrobenthic community to the Dalian Bay oil spill based on co-occurrence patterns and interaction networks. Mar Pollut Bull. 2021;171:112662. https://doi.org/10.1016/j.marpolbul.2021.112662.
  39. Guisan A, Theurillat JP. Assessing alpine plant vulnerability to climate change: a modeling perspective. Integr Assess. 2000;1(4):307-20. https://doi.org/10.1023/A:1018912114948.
  40. Haussmann NS, McGeoch MA, Boelhouwers JC. Contrasting nurse plants and nurse rocks: the spatial distribution of seedlings of two sub-Antarctic species. Acta Oecol. 2010;36(3):299-305. https://doi.org/10.1016/j.actao.2010.02.001.
  41. Hayashi K, Cooper EJ, Loonen MJJE, Kishimoto-Mo AW, Motohka T, Uchida M, et al. Potential of Svalbard reindeer winter droppings for emission/absorption of methane and nitrous oxide during summer. Polar Sci. 2014;8(2):196-206. https://doi.org/10.1016/j.polar.2013.11.002.
  42. He Q, Bertness MD, Altieri AH. Global shifts towards positive species interactions with increasing environmental stress. Ecol Lett. 2013;16(5):695-706. https://doi.org/10.1111/ele.12080.
  43. Hudson JMG, Henry GHR. High Arctic plant community resists 15 years of experimental warming. J Ecol. 2010;98(5):1035-41. https://doi.org/10.1111/j.1365-2745.2010.01690.x.
  44. Hupp N, Llambi LD, Ramirez L, Callaway RM. Alpine cushion plants have species-specific effects on microhabitat and community structure in the tropical Andes. J Veg Sci. 2017;28(5):928-38. https://doi.org/10.1111/jvs.12553.
  45. Kapfer J, Grytnes JA. Large climate change, large effect? Vegetation changes over the past century in the European High Arctic. Appl Veg Sci. 2017;20(2): 204-14. https://doi.org/10.1111/avsc.12280.
  46. Kim J, Lee WY, Park S. Trophic relations based on fecal DNA in tundra terrestrial food webs near Kongsfjorden, Svalbard, Norway. Polar Biol. 2022;45(4):615-25. https://doi.org/10.1007/s00300-022-03022-7.
  47. Klanderud K, Totland O. Habitat dependent nurse effects of the dwarf-shrub Dryas octopetala on alpine and arctic plant community structure. Ecoscience. 2004;11(4):410-20. https://doi.org/10.1080/11956860.2004.11682850.
  48. Kwon HY, Jung JY, Kim OS, Laffly D, Lim HS, Lee YK. Soil development and bacterial community shifts along the chronosequence of the Midtre Lovenbreen glacier foreland in Svalbard. J Ecol Environ. 2015;38(4):461-76. https://doi.org/10.5141/ecoenv.2015.049.
  49. Le Gall M, Word ML, Thompson N, Beye A, Cease AJ. Nitrogen fertilizer decreases survival and reproduction of female locusts by increasing plant protein to carbohydrate ratio. J Anim Ecol. 2020;89(10):2214-21. https://doi.org/10.1111/1365-2656.13288.
  50. Lin X, Wang S, Ma X, Xu G, Luo C, Li Y, et al. Fluxes of CO2, CH4, and N2O in an alpine meadow affected by yak excreta on the Qinghai-Tibetan plateau during summer grazing periods. Soil Biol Biochem. 2009;41(4):718-25. https://doi.org/10.1016/j.soilbio.2009.01.007.
  51. Losapio G, Schob C, Staniczenko PPA, Carrara F, Palamara GM, De Moraes CM, et al. Network motifs involving both competition and facilitation predict biodiversity in alpine plant communities. Proc Natl Acad Sci U S A. 2021;118(6):e2005759118. https://doi.org/10.1073/pnas.2005759118.
  52. Lu R, Zheng J, Jia C, Liu Y, Huang Z, He H, et al. Nurse effects of patch-canopy microhabitats promote herbs community establishment in sandy land. Ecol Eng. 2018;118:126-33. https://doi.org/10.1016/j.ecoleng.2018.04.019.
  53. Mack MC, Schuur EA, Bret-Harte MS, Shaver GR, Chapin FS. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature. 2004;431(7007):440-3. https://doi.org/10.1038/nature02887.
  54. Mallik AU, Wdowiak JV, Cooper EJ. Growth and reproductive responses of Cassiope tetragona, a circumpolar evergreen shrub, to experimentally delayed snowmelt. Arct Antarct Alp Res. 2011;43(3):404-9. https://doi.org/10.1657/1938-4246-43.3.404.
  55. McDonald J. Handbook of biological statistics. 2nd ed. Baltimore: Sparky House Publishing; 2009.
  56. McGranahan DA, Engle DM, Fuhlendorf SD, Miller JR, Debinski DM. Multivariate analysis of rangeland vegetation and soil organic carbon describes degradation, informs restoration and conservation. Land. 2013;2(3):328-50. https://doi.org/10.3390/land2030328.
  57. Mod HK, Luoto M. Arctic shrubification mediates the impacts of warming climate on changes to tundra vegetation. Environ Res Lett. 2016; 11(12):124028. https://doi.org/10.1088/1748-9326/11/12/124028.
  58. Molenda O, Reid A, Lortie CJ. The alpine cushion plant Silene acaulis as foundation species: a bug's-eye view to facilitation and microclimate. PLoS One. 2012;7(5):e37223. https://doi.org/10.1371/journal.pone.0037223.
  59. Moreau M, Laffly D, Joly D, Brossard T. Analysis of plant colonization on an arctic moraine since the end of the Little Ice Age using remotely sensed data and a Bayesian approach. Remote Sens Environ. 2005;99(3):244-53. https://doi.org/10.1016/j.rse.2005.03.017.
  60. Muraoka H, Noda H, Uchida M, Ohtsuka T, Koizumi H, Nakatsubo T. Photosynthetic characteristics and biomass distribution of the dominant vascular plant species in a high Arctic tundra ecosystem, Ny-Alesund, Svalbard: implications for their role in ecosystem carbon gain. J Plant Res. 2008;121(2):137-45. https://doi.org/10.1007/s10265-007-0134-8.
  61. Myers-Smith IH, Hallinger M, Blok D, Sass-Klaassen U, Rayback SA, Weijers S, et al. Methods for measuring arctic and alpine shrub growth: a review. Earth-Sci Rev. 2015;140:1-13. https://doi.org/10.1016/j.earscirev.2014.10.004.
  62. Nabe-Nielsen J, Normand S, Hui FKC, Stewart L, Bay C, Nabe-Nielsen LI, et al. Plant community composition and species richness in the High Arctic tundra: from the present to the future. Ecol Evol. 2017;7(23):10233-42. https://doi.org/10.1002/ece3.3496.
  63. Nakatsubo T, Fujiyoshi M, Yoshitake S, Koizumi H, Uchida M. Colonization of the polar willow Salix polaris on the early stage of succession after glacier retreat in the High Arctic, Ny-Alesund, Svalbard. Polar Res. 2010;29(3):285-390. https://doi.org/10.3402/polar.v29i3.6078.
  64. Nunez CI, Aizen MA, Ezcurra C. Species associations and nurse plant effects in patches of high-Andean vegetation. J Veg Sci. 1999;10(3):357-64. https://doi.org/10.2307/3237064.
  65. Oh M, Lee EJ. Cushion plant Silene acaulis is a pioneer species at abandoned coal piles in the High Arctic, Svalbard. J Ecol Environ. 2021; 45(1):1. https://doi.org/10.1186/s41610-020-00177-4.
  66. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan: community ecology package. R package version 2.5-7. 2020. https://CRAN.R-project.org/package=vegan. Accessed 2 Dec 2022.
  67. Olofsson J, Stark S, Oksanen L. Reindeer influence on ecosystem processes in the tundra. Oikos. 2004;105(2):386-96. https://doi.org/10.1111/j.0030-1299.2004.13048.x.
  68. Olofsson J. Positive and negative plant-plant interactions in two contrasting Arctic-Alpine plant communities. Arct Antarct Alp Res. 2004;36(4):464-7. https://doi.org/10.1657/1523-0430(2004)036[0464:PANPII]2.0.CO;2.
  69. Olsen SL, Klanderud K. Biotic interactions limit species richness in an alpine plant community, especially under experimental warming. Oikos. 2014;123(1):71-8. https://doi.org/10.1111/j.1600-0706.2013.00336.x.
  70. Pacyna AD, Frankowski M, Koziol K, Wegrzyn MH, Wietrzyk-Pelka P, Lehmann-Konera S, et al. Evaluation of the use of reindeer droppings for monitoring essential and non-essential elements in the polar terrestrial environment. Sci Total Environ. 2019;658:1209-18. https://doi.org/10.1016/j.scitotenv.2018.12.232.
  71. Padilla FM, Pugnaire FI. The role of nurse plants in the restoration of degraded environments. Front Ecol Environ. 2006;4(4):196-202. https://doi.org/10.1890/1540-9295(2006)004[0196:TRONPI]2.0.CO;2.
  72. Park JS, Son D, Lee YK, Yun JH, Lee EJ. Multivariate relationships between snowmelt and plant distributions in the High Arctic Tundra. J Plant Biol. 2018;61(1):33-9. https://doi.org/10.1007/s12374-017-0361-z.
  73. Pearson RG, Phillips SJ, Loranty MM, Beck PSA, Damoulas T, Knight SJ, et al. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat Clim Chang. 2013;3(7):673-7. https://doi.org/10.1038/nclimate1858.
  74. Piper FI, Fajardo A, Baeza G, Cavieres LA. The association between a nurse cushion plant and a cluster root-bearing tree species alters the plant community structure. J Ecol. 2019;107(5):2182-96. https://doi.org/10.1111/1365-2745.13188.
  75. Pueyo Y, Moret-Fernandez D, Arroyo AI, de Frutos A, Kefi S, Saiz H, et al. Plant nurse effects rely on combined hydrological and ecological components in a semiarid ecosystem. Ecosphere. 2016;7(10):e01514. https://doi.org/10.1002/ecs2.1514.
  76. R Core Team. R: a language and environment for statistical computing. Vienna: R foundation for Statistical Computing; 2022.
  77. Ren G, Wang J, Lu Y, Wu P, Lu X, Chen C, et al. Monitoring changes to Arctic vegetation and glaciers at Ny-Alesund, Svalbard, based on time series remote sensing. Remote Sens. 2021;13(19):3845. https://doi.org/10.3390/rs13193845.
  78. Rio M, Schutze G, Pretzsch H. Temporal variation of competition and facilitation in mixed species forests in Central Europe. Plant Biol (Stuttg). 2014;16(1):166-76. https://doi.org/10.1111/plb.12029.
  79. Rozema J, Weijers S, Broekman R, Blokker P, Buizer B, Werleman C, et al. Annual growth of Cassiope tetragona as a proxy for Arctic climate: developing correlative and experimental transfer functions to reconstruct past summer temperature on a millennial time scale. Glob Chang Biol. 2009;15(7):1703-15. https://doi.org/10.1111/j.1365-2486.2009.01858.x.
  80. Schob C, Armas C, Guler M, Prieto I, Pugnaire FI. Variability in functional traits mediates plant interactions along stress gradients. J Ecol. 2013;101(3):753-62. https://doi.org/10.1111/1365-2745.12062.
  81. Soliveres S, Maestre FT, Bowker MA, Torices R, Quero JL, Garcia-Gomez M, et al. Functional traits determine plant co-occurrence more than environment or evolutionary relatedness in global drylands. Perspect Plant Ecol Evol Syst. 2014;16(4):164-73. https://doi.org/10.1016/j.ppees.2014.05.001.
  82. Soliveres S, Maestre FT. Plant-plant interactions, environmental gradients and plant diversity: a global synthesis of community-level studies. Perspect Plant Ecol Evol Syst. 2014;16(4):154-63. https://doi.org/10.1016/j.ppees.2014.04.001.
  83. Son D, Lee EJ. Soil microbial communities associated with three arctic plants in different local environments in Ny-Alesund, Svalbard. J Microbiol Biotechnol. 2022;32(10):1275-83. https://doi.org/10.4014/jmb.2208.08009.
  84. Tape K, Sturm M, Racine C. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob Chang Biol. 2006;12(4):686-702. https://doi.org/10.1111/j.1365-2486.2006.01128.x.
  85. Thomas FA, Sinha RK, Krishnan KP. Bacterial community structure of a glacio-marine system in the Arctic (Ny-Alesund, Svalbard). Sci Total Environ. 2020;718:135264. https://doi.org/10.1016/j.scitotenv.2019.135264.
  86. Tibbett M, Gil-Martinez M, Fraser T, Green ID, Duddigan S, De Oliveira VH, et al. Long-term acidification of pH neutral grasslands affects soil biodiversity, fertility and function in a heathland restoration. CATENA. 2019;180:401-15. https://doi.org/10.1016/j.catena.2019.03.013.
  87. Van der Wal R, Madan N, van Lieshout S, Dormann C, Langvatn R, Albon SD. Trading forage quality for quantity? Plant phenology and patch choice by Svalbard reindeer. Oecologia. 2000;123(1):108-15. https://doi.org/10.1007/s004420050995.
  88. Vinarski MV, Korallo-Vinarskaya NP, Shenbrot GI, Warburton EM, Surkova EN, Khokhlova IS, et al. Species associations and trait dissimilarity in communities of ectoparasitic arthropods harboured by small mammals at three hierarchical scales. Ecol Entomol. 2020;45(2):321-32. https://doi.org/10.1111/een.12800.
  89. Wang Q, Liu J, Allen GA, Ma Y, Yue W, Marr KL, et al. Arctic plant origins and early formation of circumarctic distributions: a case study of the mountain sorrel, Oxyria digyna. New Phytol. 2016;209(1):343-53. https://doi.org/10.1111/nph.13568.
  90. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. Phylogenies and community ecology. Annu Rev Ecol Syst. 2002;33:475-505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448.
  91. Weijers S, Broekman R, Rozema J. Dendrochronology in the High Arctic: July air temperatures reconstructed from annual shoot length growth of the circumarctic dwarf shrub Cassiope tetragona. Quat Sci Rev. 2010;29(27):3831-42. https://doi.org/10.1016/j.quascirev.2010.09.003.
  92. Weijers S, Buchwal A, Blok D, Loffler J, Elberling B. High Arctic summer warming tracked by increased Cassiope tetragona growth in the world's northernmost polar desert. Glob Chang Biol. 2017;23(11):5006-20. https://doi.org/10.1111/gcb.13747.
  93. Yoshitake S, Uchida M, Ohtsuka T, Kanda H, Koizumi H, Nakatsubo T. Vegetation development and carbon storage on a glacier foreland in the High Arctic, Ny-Alesund, Svalbard. Polar Sci. 2011;5(3):391-7. https://doi.org/10.1016/j.polar.2011.03.002.
  94. Zuur AF, Ieno EN, Elphick CS. A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol. 2010;1(1):3-14. https://doi.org/10.1111/j.2041-210X.2009.00001.x.