• Title/Summary/Keyword: Soil phosphorus

Search Result 826, Processing Time 0.021 seconds

Stress Induced Phosphate Solubilization by Aspergillus awamori bxq33110 Isolated from Waste Mushroom Bed of Agaricus bisporus

  • Walpola, Buddhi Charana;Song, June-Seob;Jang, Kab-Yeul;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.428-434
    • /
    • 2012
  • A fungal strain, capable of solubilizing insoluble phosphate under diverse temperature, pH and salt conditions was isolated from Waste Mushroom bed of Agaricus bisporus in South Korea. Based on 18S rRNA analysis, the strain was identified as Aspergillus awamori bxq33110. The strain showed maximum phosphate solubilization in AYG medium (525 ${\mu}g\;mL^{-1}$) followed by NBRIP medium (515 ${\mu}g\;mL^{-1}$). The strain solubilized $Ca_3(PO_4)_2$ to a greater extent and rock phosphate and $FePO_4$ to a certain extent. However $AlPO_4$ solubilizing ability of the strain was found to be very low. Glucose at the rate of 2% ($561{\mu}g\;mL^{-1}$) was found be the best carbon source for Aspergillus awamori bxq33110 to solubilize maximum amount of phosphate. However, no significant difference ($P{\leq}0.05$) in phosphorus solubilization was found between 1% and 2% glucose concentrations. $(NH_4)_2SO_4$ was the best nitrogen source for Aspergillus awamori bxq33110 followed by $NH_4Cl$ and $NH_4NO_3$. At pH 7, temperature $30^{\circ}C$ and 5% salt concentration (674 ${\mu}g\;mL^{-1}$) were found to be the optimal conditions for insoluble phosphate solubilization. However, strain Aspergillus awamori bxq33110 was shown to have the ability to solublize phosphate under different stress conditions at $30-40^{\circ}C$ temperature, pH 7-10 and 0-10% salt concentrations indicating it's potential to be used as bio-inoculants in different environmental conditions.

Water Quality and Sediment Contamination in the Iksan Stream (익산천 수질시료와 저질토의 오염도 평가)

  • Seo, Young-Seok;Cho, Min;Oh, Byung-Taek
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.123-128
    • /
    • 2013
  • Water quality and contamination of sediment is a growing concern in the Iksan stream of Korea. Heavy metal contamination and changes in the physicochemical properties of the stream were evaluated. Water and sediment samples were collected from six sites during the dry and rainy seasons; pH, DO, EC, ORP, turbidity, $PO_4$-P, $NO_3$-N and selected heavy metals (Cu, Pb, Ni, As, Zn, Cd, Hg) were measured. Results showed almost no change in pH between seasons. DO was highest at site 2 (~2.63 mg/L) in the dry season; EC (1,540 ms/m) was greatest at site 1 in both seasons. The ORP gradually increased from the dry to rainy season at most of the sites and was highest at site 5. Turbidity was highest at site 1 and gradually decreased from the dry to rainy season at all sites except site 3. $PO_4$-P ranged from a high of 1,193mg/L at site 1 to in the dry season to a low of ~1.2 mg/L at site 4. In contrast, $NO_3$-N was highest at site 3 in the rainy season (12,531 mg/L). Among the heavy metals measured, Cu and Zn concentrations were highest at all sediment sites. Cu and Zn are added to livestock feed to improve reproductive rates and can be carried to the stream with manure. Transport of sediment and heavy metals during the rainy season is the major source of stream contamination and it is important to continue monitoring and take necessary action in these areas.

Biodegradable Check Dam and Synthetic Polymer, its Experimental Evaluation for Turbidity Control of Agricultural Drainage Water

  • Kim, Minyoung;Kim, Seounghee;Kim, Jinoh;Lee, Sangbong;Kim, Youngjin;Cho, Yongho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.458-462
    • /
    • 2013
  • A drainage ditch is normally a component of drainage networks in farming systems to remove surplus water, but at the same time, it may act as a major conduit of agricultural nonpoint source pollutions such as sediment, nitrogen, phosphorus, and so on. The hybrid turbidity reduction system using biodegradable check dam and synthetic polymer was developed in this study to manage pollutant discharge from agricultural farmlands during rainfall events and/or irrigation periods. The performance of this hybrid system was assessed using a laboratory open channel sized in 10m-length and 0.2m-width. Various check dams using agricultural byproducts (e.g., rice straw, rice husks, coconut fiber and a mixture of rice husks and coconut fiber) were tested and additional physical factors (e.g., channel slope, flowrate, PAM dosage, turbidity level, etc.) affecting on turbidity reduction were applied to assess their performance. A series of lab experiments clearly showed that the hybrid turbidity reduction system could play a significant role as a supplementary of Best Management Practice (BMP). Moreover, the findings of this study could facilitate to develop an advanced BMP for minimizing nonpoint source pollution from agricultural farmlands and ultimately to achieve the sustainable agriculture.

Development of Organic Compound Fertilizer Based on Treated Human Waste (분뇨잔사(糞尿殘渣)를 이용(利用)한 유기종합비료(有機綜合肥料) 개발(開發))

  • Shin, Jae-Sung;Seong, Ki-Seog;Lim, Dong-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.1
    • /
    • pp.55-59
    • /
    • 1984
  • An organic compound fertilizer was manufactured using wet oxidation human waste as principal source of phosphorus and organic matter. The waste was treated with sulfuric and glutamic acids to increase the available and water-soluble $P_2O_5$ contents. The treatment of 0.1 N sulfuric acid with 24 hours curing was best way in recovering the maximum percentage of $P_2O_5$ originally in the waste. The particle size distribution of trial product varied considerably in the amount of glutamic acid used for granulation. The number of relatively large fertilizer particles was increased as the amount of glutamic acid was increased. The granule crushing strength was generally high in large granules in which 12.5 weight percent of glutamic acid were used for granulation. The trial product showed high moisture absorption due to its porous structure and chemical makeup.

  • PDF

Riparian Area Characteristics of the Middle and Lower Reaches of the Nakdong River, Korea (낙동강 중·하류 지역의 수변 특성에 관한 연구)

  • Kang, Dae-Seok;Sung, Ki-June;Yeo, Un-Sang;Chung, Yong-Hyun;Lee, Suk-Mo
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.3
    • /
    • pp.189-200
    • /
    • 2008
  • As a transition zone between terrestrial and aquatic ecosystems, riparian areas of rivers and streams play significant roles in production and decomposition for river and stream systems. Understanding of the physical and ecological characteristics of riparian areas are, therefore, important for the management of river and stream systems. It is especially important to understand the characteristics of riparian areas for the Nakdong River in Korea which has a large watershed area and diverse land uses. This study aimed at collecting field data, according to stream types, which are essential for the management of riparian areas of the middle and lower reaches of the Nakdong River, Korea. Most riparian areas surveyed in this study had roads within 100 meters from river edges. Distances from water edge to banks were less than 1m for most riparian areas neighboring agricultural lands, indicating that those areas might be very vulnerable to pollutant inputs from non-point sources. Water quality data indicated that soil erosion in the riparian areas could be a major source of phosphorus input to the Nakdong River and land use patters might have a significant influence on nitrogen concentration in the river. Heavy metal concentrations in soils of the riparian areas of the river were below soil quality standards, except arsenic and chromium. Vegetation surveys showed that therophytes were the most frequently occurred riparian plants in the Nakdong River. Number of aquatic plant species increased downstream, with the most diverse aquatic plants observed in wetlands and irrigation canals of the West Nakdong River. Occurrence rate of naturalized plants and urbanization index were high in the survey sites adjacent to urban and agricultural areas.

Impact of Livestock-production Wastewater on Water Pollution (가축분뇨수의 무단방류가 샛강오염에 미치는 영향)

  • Choe, Hong-Rim;Son, Jae-Ho;Ryu, Sun-Ho
    • Journal of Korean Society of Rural Planning
    • /
    • v.2 no.1
    • /
    • pp.69-78
    • /
    • 1996
  • Environmental impact assessment survey reflecting farmers` opinion on the residence and production space in rural settlement area by ORD showed that more than 86% of respondents thought their reservoirs and waterways (small rivers) were getting seriously contaminated primarily by garbage and livestock manure. A typical rural settlement unit was taken to assess the impact of improper management of livestock manure in the farms on the water quality of small river flowing down along the villages where swine and dairy farms were situated in Daejook 2, 3-ri, Seolseong-myun, Icheon-gun. Nitrogen compounds such as NO$_3$-N, NO$_2$-N, NH$_3$-N, and phosphorus compound H$_x$PO$_4$, DO, BOD$_5$, COD, and microbial density were analyzed to evaluate water quality at five test sites designated along the water stream. Tests showed. for example, BOD$_5$ at site 4 was average 9.2mg/l which was about 3~8 times higher than that of observation site 2 and 3, at which most livestock houses were situated. This is a clear evidence that the nutrients of livestock manure illegally discharged to small river can lead to an eutrophication of the river at downstream. A soil absorption system with aeration could be one of alternatives to treat the contaminated wastewater by livestock manure. The place at downstream, inbetween observation site 1 and 2, could be the best construction site for the treatment facility from the standpoint of the overall treatment efficiency, An enclosed composting system can also be regarded as a good alternative for treatment of the sludge which is the by-product of the soil absorption system operation.

  • PDF

HSPF and SWAT Modelling for Identifying Runoff Reduction Effect of Nonpoint Source Pollution by Rice Straw Mulching on Upland Crops (볏짚 피복에 의한 밭 비점오염원 유출저감효과 분석을 위한 HSPF와 SWAT 모델링)

  • Jung, Chung Gil;Ahn, So Ra;Kim, Seong Joon;Yang, Hee Jeong;Lee, Hyung Jin;Park, Geun Ae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.2
    • /
    • pp.47-57
    • /
    • 2013
  • This study is to assess the reduction of non-point source pollution loads for rice straw mulching of upland crop cultivation at a watershed scale. For Byulmi-cheon watershed (1.21 $km^2$) located in the upstream of Gyeongan-cheon, the HSPF (Hydrological Simulation Program-Fortran) and SWAT (Soil and Water Assesment Tool), physically based distributed hydrological models were applied. Before evaluation, the model was calibrated and validated using 9 rainfall events. The Nash-Sutcliffe model efficiency (NSE) for streamflow using the HSPF was 0.62~0.76 and the determination coefficient ($R^2$) for water quality (sediment, total nitrogen T-N, and total phosphorus T-P) were 0.72, 0.62, and 0.63 respectively. The NSE for streamflow using the SWAT were 0.43~0.81 and the $R^2$ for water quality (sediment, T-N, and T-P) were 0.54, 0.87, and 0.64 respectively. From the field experiment of 16 rainfall events, the rice straw cover condition reduced surface runoff average 10.0 % compared to normal surface condition. By handling infiltration capacity (INFILT) in HSPF model, the value of 16.0 mm/hr was found to reduce about 10.0 % reduction of surface runoff. For this condition, the reduction effect of sediment, T-N, and T-P loads were 87.2, 28.5, and 85.1 % respectively. By handling soil hydraulic conductivity (SOL_K) in SWAT model, the value of 111.2 mm/hr was found to reduce about 10.0 point reduction of surface runoff. For this condition, the reduction effect of sediment, T-N, and T-P loads were 80.0, 83.2, and 78.7 % respectively. The rice straw surface covering was effective for removing surface runoff dependent loads such as sediment and T-P.

Nutrient production from Korean poultry and loading estimations for cropland

  • Won, Seunggun;Ahmed, Naveed;You, Byung-Gu;Shim, Soomin;Kim, Seung-Su;Ra, Changsix
    • Journal of Animal Science and Technology
    • /
    • v.60 no.2
    • /
    • pp.3.1-3.9
    • /
    • 2018
  • Background: Poultry breeding has increased by 306% in Korea, inevitably increasing the production of manure which may contribute to environmental pollution. The nutrients (NP) in the manure are essential for crop cultivation and soil fertility when applied as compost. Excess nutrients from manure can be accumulated on the land and can lead to eutrophication. Therefore, a nutrient load on the finite land should be calculated. Methods: This study calculates the nutrient production from Korean poultry by investigating 11 broiler and 16 laying hen farms. The broiler manure was composted using deep litter composting while for layer deep litter composting, drying, and simple static pile were in practice. The effect of weight reduction and storing period during composting was checked. Three weight reduction cases of compost were constructed to calculate nutrient loading coefficients (NLCs) using data from; i) farm investigation, ii) theoretical P changes (${\Delta}P=0$), and iii) dry basis. Results: During farm investigation of broiler and layer with deep litter composting, there was a 68 and 21% N loss whereas 77 and 33% P loss was found, respectively. In case of layer composting, a loss of 10-56% N and a 52% P loss was observed. Drying manure increased the P concentrations therefore NLCs calculated using dry basis that showed quite higher reductions (67% N; 53% P). Nutrient loss from farm investigation was much higher than reported by Korean Ministry of Environment (ME). Conclusions: Nutrients in manure are decreased when undergo storing or composting process due to microbial action, drying, and leaching. The nutrient load applied to soil is less than the fresh manure, hence the livestock manure management and conservation of environment would be facilitated.

A Study on Feeding ,Reproduction , Meat and Milk Productions , Disease and Genetic Character for Cheju Horse Industry Development I.Monthly changes of herbage production comparing new pastures of horse farm with old pastures (제주마 생산기반 확대를 위한 사육 , 번식 , 가공 , 질병 및 유전형질의 연구 I. 제주지역 마사육목장에서 방목기간동안 월별 신규개량초지와 기성 개량초지 간에 목초생산성 비교)

  • 김문철;정창조
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.16 no.1
    • /
    • pp.61-68
    • /
    • 1996
  • Hehage production, botanical composition and soil chemical characteristics were investigated Ween new pastures and old pastures during grazing seasons from May 1993 to October 1994, to find out the condition of pastures grazed by horses on Chdu. Dry matter yields between new pastures and old pastures were 8,757kglha and 7,486kglha respectively. Plant heights of new pastures were 17.4cm. compared with those of old pastures of 12.lcm. The botanical composition of new pastures was composed of grasses about 402, legumes 7~14%, others 18-30% and dead materials 18~ 25%. whiie there were grasses 12%, legumes 3~7%, others 65% and dead materials 15% in old pastures. The contents of crude protein, phosphoms and sodium were lower in old pastures(l3.30, 0.24 and 0.10% respectively) than those in new pastures(l5.47, 0.28 and 0.14% respectively). There was no difference in ADF, NDF, Ca, Mg and K content between the 2 kinds of pastures. The chemical characteristics of the 2 kinds of pastures was shown to be similar, except available phosphorus, comparing 8.18ppm in old pastures with 84.43ppm in new pastures. Although the herbage yield and the soil characteristics of old pastures were lower than those of new pastures, we suppose that the old pastures would be improved, if taken good care of by methods such as oversowing and sometimes applying fertilizer.

  • PDF

Effects of Inoculation of Mycorrhiza and Rhizobium on N, P utilization and Vegetative Growth in Alfalfa/Perennial Ryegrass Intercropping (Mycorrhiza 및 Rhizobium 접종이 알팔파-페레니얼 라이그라스 혼파에 의한 질소와 인의 이용성 및 성장에 미치는 영향)

  • 정우진;이복례;김길용;정순주;김태환
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.4
    • /
    • pp.285-294
    • /
    • 2000
  • To investigate the effect of Mycorrhiza (Glomus intradics) and Rhizobium inoculation on the N, P utilization and growth response of Alfalfa (Medicago saliva L.) and Perennial ryegrass (Lolium perenne L.) in mixed sward, four treatments (non-inoculation, Control; Mycorrhiza inoculation: M; Rhizobium inoculation, R and Mycorrhiza and Rhizobium inoculation, M+R) were applied. The associated analyses were canied out on the early vegetative growth stage (DAS 56, 56 days after seeding) and on the early flowering stage (DAS 126). The decreased rate of total N and P content in soil, with advancing plant growth, was relatively higher in the M and M + R treatment than control. The content of availabie phosphorus in soil at DAS 126 increased by about 34 and 38 % in M and M+R treatment compared to control (189.2 mg PzOskg DM), while non-significant changes was observed in R treatment. Total N uptake and P uptake in the control at DAS 126 were 44.71 and 3.52 mglplant in mixed sward, respectively. About 71, 98 and 197 % of increases in total N uptake and 70, 72 and 11 1 % of increases in total P uptake were estimated in M, R and M+R treatment. Comparing to control, total dry matter yield significantly increased by 27, 33 and 53 %, and crude protein yield also by 78, 83 and 204 %, respectively, in M, R and M+R treatment. The present data indicated that mycorrhiza orland rhizobium inoculation improved N, P utilization of both alfalfa and perennial ryegrass plants, and consequently increased total yield (especially by dual inoculation, M+R). (Key words : Alfalfa, Perennial ryegrass, Mycorrhiza, Rhizobium, N and P Utilization, Growth, Yield)

  • PDF