• Title/Summary/Keyword: Soil phosphorus

Search Result 826, Processing Time 0.029 seconds

Several Soil Chemical Properties on Mulberry Fields in Kyunggi Province (경기도 뽕밭의 토양화학성)

  • 이원주
    • Journal of Sericultural and Entomological Science
    • /
    • v.32 no.1
    • /
    • pp.5-7
    • /
    • 1990
  • Soil chemical properties of 60 mulberry fields from 29 farms in Kyunggi Province were analyzed. The results were: 1. Average soil pH was 5.52: organic matter, 1.74%; available phosphorus, 572ppm; and exchangeable potassium, 0.62me/100g. Values for available P and pH were greater than data collected in 1983, especially for available P which was four times the value obtained in 1982. 2. Ninety two percent of mulberry fields required lime (less than pH 6.5), 90% had low organic matter content (less than 3.0%), 22% were low in K, and 15% were low in P (less than 0.5me/100g and 200ppm, respectively). However, 50% of the fields had greater than 200ppm P. The maximum concentration of P found was 2117ppm. 3. These results suggest that the amount of phosphate applied annually may be readjusted in standard fertilizer and in three-nutrient fertilizers for mulberry fields.

  • PDF

Environmental and Growth Characteristics of Pimpinella brachycarpa Habitat in Mt. Jeombong, Korea (점봉산 참나물 자생지의 환경 및 생육 특성)

  • Park, Yun Mi;Kim, Mahn-Jo
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.687-692
    • /
    • 2011
  • Pimpinella brachycarpa, a summer-green perennial herb, is narrowly distributed in the moist forest floors. We investigated environmental characteristics and growth patterns of Pimpinella brachycarpa depending on the microenvironment in Mt. Jeombong located in the central part of Korea. P. brachycarpa populations were located at an altitude of 978~1016 m and the average atmospheric humidity hovered at 80 percent. Also, it was found that the soil moisture content was remarkably high, 26.7%, in the populations; organic matter 11.1~11.7%; the nitrate nitrogen 0.60%; available phosphorus 19.5~39.0 ppm; CEC $20.8{\sim}21.3cmolckg^{-1}$; soil pH 4.7~4.8 respectively. In case of growth pattern, the shoot length of individuals under the improved light condition in the sunny forest was statistically longer than in the dense forest. Therefore, we presumed that high humidity and ample soil moisture are abiotic factors of the growth of P. brachycarpa and that the amount of light affects the relative growth rate of individuals.

Ecological Factors Influencing Severity of Cashew Fusarium Wilt Disease in Tanzania

  • Lilai, Stanslaus A.;Kapinga, Fortunus A.;Nene, Wilson A.;Mbasa, William V.;Tibuhwa, Donatha D.
    • Research in Plant Disease
    • /
    • v.27 no.2
    • /
    • pp.49-60
    • /
    • 2021
  • Cashew (Anacardium occidentale L.) is an important cash crop in Tanzania as a source of income to cashew growers and provides foreign exchange for the country. Despite its significance, the crop is threatened by fast spreading disease known as cashew Fusarium wilt caused by Fusarium oxysporum. Field assessment and laboratory tests were conducted to determine incidences of the disease, severity, ecological factors that influence them and explored the pathogen host specificity in six cashew growing districts. The results revealed significant (P<0.001) variation of disease incidences and severity among the studied districts. The results further revealed that there is both positive and negative correlation between the incidence and severity of the disease versus the evaluated ecological factors. The soil pH, soil temperature, air temperature, and relative humidity depicted positive correlation of disease incidence and severity versus ecological factors at ρ=0.50 and ρ=0.60, ρ=0.20 and ρ=0.94, ρ=0.11 and ρ=0.812, ρ=0.05 and ρ=0.771 respectively while nitrogen, phosphorus, and carbon depicted negative correlations at ρ=-0.22 and ρ=-0.58, ρ=-0.15 and ρ=-0.94, ρ=-0.19 and ρ=-0.12 respectively. In terms of host range, none of the weed species was found to be a carrier of Fusarium pathogen implying that it is host specific or semi selective. The results revealed that the tested ecological parameters favor the growth and development of Fusarium pathogen. Thus, management of the disease requires nutrients replenishment and soil shading as essential components in developing appropriate strategies for the control and prevention of further spread of the disease.

Application Effect of Rendering Livestock Carcass-Based Carbonized Material in Chinese Cabbage Cultivation (배추재배지에서 랜더링 가축사체 탄화체의 시용효과)

  • Tae-Uk Jeong;Jae-Hoon Lee;Jun-Suk Rho;Dong Yeol Lee;Jeong-Min Lee;Jong-Hwan Park;Dong-Cheol Seo
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.3
    • /
    • pp.177-183
    • /
    • 2023
  • Rendering, is attracting attention as a technology that can stably and quickly process livestock carcasses. However, large amounts of livestock carcass solid residues are discharged in this process and limited methods are available for recycling them. In this study, rendered animal carcass solid residues were pyrolyzed to produce carbonized materials (350℃; RACR-C) and their chemical properties were investigated. Further, RACR-C were applied to cabbage cultivation for investigating their crop growth characteristics and soil improvement effects. RACR-C contained large amounts of fertilizer components such as nitrogen and phosphorus, and showed no toxic effects on the seedling growth of crops. The content of water-soluble nutrients released from RACR-C under the reaction time increased rapidly within 30 min, but was insignificant compared to the total content. Thus, most fertilizer components in RACR-C were not readily soluble in water. The optimal application amount for applying RACR-C to cabbage cultivation based on the changes in cabbage growth, inorganic content, and soil chemistry was 200 kg/10a. Overall, pyrolysis of solid residues after rendering livestock carcass to produce carbonized material as a soil improver is an effective method to recycle the waste discharged from the rendering process.

Estimating the Relative Contribution of Organic Phosphorus to Organic Matters with Various Sources Flowing into a Reservoir Via Fluorescence Spectroscopy (형광스펙트럼을 이용한 유역 하류 저수지의 유입 유기물 내 유기인 기여도 평가)

  • Mi-Hee Lee;Seungyoon Lee;Jin Hur
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.2
    • /
    • pp.67-78
    • /
    • 2024
  • The introduction of a significant amount of phosphorous into aquatic environments can lead to eutrophication, which can in turn result in algal blooms. For the effective management of watersheds and the prevention of water quality problems related to nonpoint organic matter (OM) sources, it is essential to pinpoint the predominant OM sources. Several potential OM sources were sampled from upper agricultural watersheds, such as fallen leaves, riparian reeds, riparian plants, paddy soil, field soil, riparian soil, cow manure, and swine manure. Stream samples were collected during two storm events, and the concentrations of dissolved organic carbon (DOC) and phosphorous (DOP) from these OM sources and stream samples were assessed. DOM indicators using fluorescence spectroscopy, including HIX, FI, BIX, and EEM-PARAFAC, were evaluated in terms of their relevance in discerning DOM sources during storm events. Representative DOM descriptors were chosen based on specific criteria, such as value ranges and pronounced differences between low and high-flow periods. Consequently, the spectral slope ratio (SR) paired with fluorescence index (FI) using end-member mixing analysis (EMMA) proved to be suitable for estimating the contribution of organic carbon (OC). The contribution of each organic phosphorous (OP) in stream samples was determined using the phosphorous-to-carbon (P/C) ratio in conjunction with the OC contribution. Notably, OP derived from swine manure in stream samples was found to make the most dominant contribution, ranging from 61.3% to 94.2% (average 78.1% ± 12.7%). The results of this research offer valuable insights into the selection of suitable indicators to recognize various OM sources and highlight the main sources of OP in forested-agricultural watersheds.

Influences of Silicate Fertilizer Application on Soil Properties and Red Pepper Productivity in Plastic Film House (규산질비료가 시설재배지 토양특성과 고추수량에 미치는 영향)

  • Ahn, Byung-Koo;Han, Soo-Gon;Kim, Jong-Yeob;Kim, Kab-Cheol;Ko, Do-Young;Jeong, Seong-Soo;Lee, Jin-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.254-261
    • /
    • 2014
  • BACKGROUND: This study was conducted to investigate effects of silicate fertilizer application on red pepper (Capsicum annuum L.) productivity with improving soil chemistry under plastic film house in paddy field. METHODS AND RESULTS: The silicate fertilizer was applied as 0, 100, 200, and 300 kg/10a as basal dressing before transplanting pepper plant seedlings. Cultivar of the pepper plant was Cheon-Ha-Dae-Se. Amounts of inorganic fertilizer applied as $N-P_2O_5-K_2O$=19.0-6.4-10.1kg/10a was estimated depending on soil test values. After applying 50% of nitrogen, 100% of phosphorus, and 60% of potassium fertilizers as basal dressing, the seedlings of pepper plant were transplanted. The rests of nitrogen and potassium fertilizers were applied as side-dressing after the first, second, and fourth harvests of red pepper. When comparing selected chemical properties of soils between before transplanting and after final(the fifth) harvest, soil pH, available $P_2O_5$, and exchangeable $Ca^{2+}$ increased with increasing the applications of silicate fertilizer, whereas electrical conductivity(EC) decreased. However, exchangeable $K^+$ was higher with the treatments of 100 and 200 kg/10a, and exchangeable $Mg^{2+}$ was higher with 300 kg/10a application. In addition, nitrogen and phosphorus concentrations of red pepper collected from the first harvesting stage decreased with increasing the applications of silicate fertilizer, but potassium, calcium, and magnesium concentrations in red pepper were highest with 300 kg/10a application. Yield of red pepper increased between 9.0 and 11.8% with the applications of silicate fertilizer. Marketable fruit rate of res pepper was highest(97.3%) with 200 kg/10a application. CONCLUSION: The application of silicate fertilizer as basal dressing in paddy-converted fields improved soil chemistry and increased red pepper productivity.

Effects of Nitrogen and Phosphorus Fertilization on Soil Nitrogen Mineralization of Pinus rigida and Larix kaempferi Plantations in Yangpyeong area, Gyeonggi Province (질소(窒素)와 인(燐) 시비(施肥)가 경기도(京畿道) 양평지역(楊平地域) 리기다소나무와 낙엽송(落葉松) 조림지(造林地) 토양(土壤) 내(內) 질소무기화(窒素無機化)에 미치는 영향(影響))

  • Lee, Im-Kyun;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.1
    • /
    • pp.82-90
    • /
    • 2006
  • To examine the effects of nitrogen and phosphorus fertilization on soil nitrogen (N) mineralization, we monitored rates of soil nitrogen mineralization and nitrification in 41-year-old pitch pine (Pinus rigida Mill.) and Japanese larch (Larix kaempferi Gordon) stands growing on similar soil condition in central Korea. For this study, we used the buried-bag incubation method. Fertilizers were applied at three levels [control (C), 200 N kg/ha+25 P kg/ha (LNP), and 400 N kg/ha+50 P kg/ha(HNP)] on 5 June, 1996. Mineral soils (0~20 cm) were incubated 6 times with 45-day-interval from 5 June 1996 to 4 June 1997. Initial soil moisture contents were significantly different among sampling dates and between tree species. Initial soil moisture contents were 32% for C, 28% for LNP, and 26% for HNP at the P. rigida stand, and 31% for C, 31% for LNP, and 33% for HNP at the L. kaempferi stand, respectively. Mean daily N mineralization rates were significantly different among sampling dates and treatments. Annual net N mineralization and nitrification were also significantly different between the two tree species. The annual net N mineralization was 10.6 kg/ha/year for C, 23.3 kg/ha/year for LNP and 6.6 kg/ha/year for HNP at the P. rigida stand, and 2.0 kg/ha/year for C, 12.1 kg/ha/year for LNP and 16.7 kg/ha/year for HNP at the L. kaempferi stand. The annual nitrification was 2.8 kg/ha/year for C, 7.6 kg/ha/year for LNP and 4.3 kg/ha/year for HNP at the P. rigida stand, and 4.3 kg/ha/year for C, 14.8 kg/ha/year for LNP and 6.6 kg/ha/year for HNP at the L. kaempferi stand. The ratios of annual net nitrification to annual net N mineralization were 26% for C, 33% for LNP, 65% for HNP at the P. rigida stand, and 100% for C, 100% for LNP, 40% for HNP at the L. kaempferi stand, respectively. This study indicates that N mineralization in forest may be different by the predominant tree species and fertilization even under similar environments. It is likely that the quality of organic matter might control nitrogen mineralization and nitrification in soils.

Studies on the method of compost and phosphate application for the rice paddy (1) -Influence of the method of compost and phosphate application to the humus content of soil, paddy yield and its components- (수도(水稻)에 대(對)한 퇴비(堆肥)와 인산(燐酸)의 시용(施用) 방법(方法)에 관(關)한 연구(硏究)(1) -퇴비(堆肥)와 인산(燐酸)의 시용방법(施用方法)이 토양부식함량(土壤腐植含量)과 수량(收量) 및 그 구성요소(構成要素)에 미치는 영향(影響)(예보(豫報))-)

  • Kim, Jung-Ki
    • Applied Biological Chemistry
    • /
    • v.9
    • /
    • pp.149-152
    • /
    • 1968
  • In order to establish a effective application method of compost and phosphorus fertilizer for rice plant, a field experiment has been conducted and the variation of the organic matter content in soils has been observed. The results may be summarized as follows. 1. It was more effective to split the application time into basic and in 2 weeks before the young premodia formation for the yield increase of rice grain than to applicate once basic, and it was apparent that the lesser amount of organic matter during the growing period of rice was consumed, the higher yield of rice grain was resulted. 2. The combined application of compost and phosphorus fertilizer showed a tendency to raise higher the grain yield than the separated application. 3. It was suggested that the split application of compost bring yield increase of rice grain.

  • PDF

Optimal Poultry Litter Management through GIS-based Transportation Analysis System

  • Kang, M.S.;Srivastava, P.;Fulton, J.P.;Tyson, T.;Owsley, W.F.;Yoo, K.H.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.7
    • /
    • pp.73-86
    • /
    • 2006
  • Concentrated poultry production in the State of Alabama, U.S.A. results in excessive poultry litter. Application of poultry litter to pastures and row crops serves as a cheap alternative to commercial fertilizer. However, over the years, poultry litter application to perennial forage crops in the Appalachian Plateau region of North Alabama has resulted in phosphorus (P) buildup in soils. Phosphorus index (P-index) and comprehensive nutrient management plans (CNMP) are often used as a best management practice (BMP) for proper land application of litter. Because nutrient management planning is often not done for small animal feeding operations (AFOs), and also because, in case of excess litter, litter transportation infrastructure has not been developed, over application of poultry litter to near by area is a common practice. To alleviate this problem, optimal poultry litter management and transportation infrastructure needs to be developed. This paper presents a methodology to optimize poultry litter application and transportation through efficient nutrient management planning and transportation network analysis. The goal was accomplished through implementation of three important modules, a P-Index module, a CNMP module, and a transportation network analysis module within ArcGIS, a Geographic Information System (GIS). The CNMP and P-Index modules assist with land application of poultry litter at a rate that is protective of water quality, while the transportation network analysis module helps transport excess litter to areas requiring litter in the Appalachian Plateau and Black Belt (a nutrient-deficient area) regions. Once fully developed and implemented, such a system will help alleviate water quality problems in the Appalachian Plateau region and poor soil fertility problems in the Black Belt region by optimizing land application and transportation. The utility of the methodology is illustrated through a hypothetical case study.

Dynamics of Nutrient and KDICical Constituents during Litter Decomposition (낙엽의 분해과정에 따른 영양염류 및 화학적 구성원의 동태)

  • Mun, hyeibg-Tae;Jae-Hoon Pyo
    • The Korean Journal of Ecology
    • /
    • v.17 no.4
    • /
    • pp.501-511
    • /
    • 1994
  • Dynamics of nutrients, non-polar, water solubles, acid solubles and acid insolubles (lignin) in decomposing litter were investigated for 2 years in the oak, Quercus acutissima, and the pitch pine, Pinus rigida, stands in the vicinity of Kongju, Chungnam Province. Nitrogen and phosphorus conetrations in decomposing litter increased with time elapsed, however, potassium decreased rapidly within three months and then remined constant with time elapsed. Calcium concentration in needle litter during experimental period was lower than that of initial concentration in needle litter during experimental period was lower than that of initial concentration, and showed no significant variation with time elapsed. Calcium concentration in oak litter during the experimental period, however, were higher than that of initial concentration. Magnesium concentration in oak litter decreased repidly during six months, and then remaines constant thereafter. Annual amount of nitrogen, phosphorus, potassium, calcium and magnesium which returned to soil via litter decomposition in the oak and the pitch pine stands was $3.3g/m^2$ and $0.9g/m^2$ for N, $0.03g/m^2$ and $0.01g/m^2$ for P, $1.3g/m^2$ and $0.7g/m^2$ for K, $0.7g/m^2$ and $1.2g/m^2$ for Ca, $0.9g/m^2$ and $0.4g/m^2$ for Mg, respectively. Non-polar, and water- and acid-soluble fractions in decomposing litter decreased and lignin increased with time.

  • PDF