Effects of Nitrogen and Phosphorus Fertilization on Soil Nitrogen Mineralization of Pinus rigida and Larix kaempferi Plantations in Yangpyeong area, Gyeonggi Province

질소(窒素)와 인(燐) 시비(施肥)가 경기도(京畿道) 양평지역(楊平地域) 리기다소나무와 낙엽송(落葉松) 조림지(造林地) 토양(土壤) 내(內) 질소무기화(窒素無機化)에 미치는 영향(影響)

  • Lee, Im-Kyun (Department of Forest Environment, Korea Forest Research Institute) ;
  • Son, Yowhan (Division of Environmental Science and Ecological Engineering, Korea University)
  • 이임균 (국립산림과학원 산림환경부) ;
  • 손요환 (고려대학교 환경생태공학부)
  • Received : 2005.11.08
  • Accepted : 2005.12.02
  • Published : 2006.03.31

Abstract

To examine the effects of nitrogen and phosphorus fertilization on soil nitrogen (N) mineralization, we monitored rates of soil nitrogen mineralization and nitrification in 41-year-old pitch pine (Pinus rigida Mill.) and Japanese larch (Larix kaempferi Gordon) stands growing on similar soil condition in central Korea. For this study, we used the buried-bag incubation method. Fertilizers were applied at three levels [control (C), 200 N kg/ha+25 P kg/ha (LNP), and 400 N kg/ha+50 P kg/ha(HNP)] on 5 June, 1996. Mineral soils (0~20 cm) were incubated 6 times with 45-day-interval from 5 June 1996 to 4 June 1997. Initial soil moisture contents were significantly different among sampling dates and between tree species. Initial soil moisture contents were 32% for C, 28% for LNP, and 26% for HNP at the P. rigida stand, and 31% for C, 31% for LNP, and 33% for HNP at the L. kaempferi stand, respectively. Mean daily N mineralization rates were significantly different among sampling dates and treatments. Annual net N mineralization and nitrification were also significantly different between the two tree species. The annual net N mineralization was 10.6 kg/ha/year for C, 23.3 kg/ha/year for LNP and 6.6 kg/ha/year for HNP at the P. rigida stand, and 2.0 kg/ha/year for C, 12.1 kg/ha/year for LNP and 16.7 kg/ha/year for HNP at the L. kaempferi stand. The annual nitrification was 2.8 kg/ha/year for C, 7.6 kg/ha/year for LNP and 4.3 kg/ha/year for HNP at the P. rigida stand, and 4.3 kg/ha/year for C, 14.8 kg/ha/year for LNP and 6.6 kg/ha/year for HNP at the L. kaempferi stand. The ratios of annual net nitrification to annual net N mineralization were 26% for C, 33% for LNP, 65% for HNP at the P. rigida stand, and 100% for C, 100% for LNP, 40% for HNP at the L. kaempferi stand, respectively. This study indicates that N mineralization in forest may be different by the predominant tree species and fertilization even under similar environments. It is likely that the quality of organic matter might control nitrogen mineralization and nitrification in soils.

경기도 양평지역의 유사한 토양 위에 조성되어 있는 41년생 리기다소나무와 낙엽송 조림지를 대상으로 질소 및 인 시비가 표토층(0~20cm)의 질소무기화에 미치는 영향을 조사하였다. 본 연구에서는 비닐주머니 매설법을 이용하여 질소무기화율을 측정하였으며, 시비수준은 대조구 (control), 저수준 시비구 [200 N kg/ha+25 P kg/ha(LNP)], 고수준 시비구 [400 N kg/ha+50 P kg/ha(HNP)] 등 세 처리 수준으로 하였다. 조사기간은 1996년 6윌 5일부터 1997년 6월 4일까지 1년간이었으며, 45일 간격으로 6회 배양을 실시하였다. 본 연구로부터 얻어진 결과들을 종합하면 다음과 같다. 배양초기 토양함수율은 리기다소나무 임분의 경우, 대조구가 32%, LNP 처리구가 28%, 그리고 HNP 처리구가 26%였으며, 낙엽송 임분의 경우 대조구가 31% LNP 처리구가 31% 그리고 HNP 처리구가 33%이었다. 조사기간동안의 평균 질소 무기화율은 두 수종 모두 배양시기간과 처리간에 유의적인 차이가 있는 것으로 나타났으며, 대조구에 비해 시비처리구에서 무기화율이 높았다. 토양시료 배양기간 동안의 연간 질소 무기화량과 질산화량은 수종간 그리고 처리간에 통계적으로 유의적인 차이가 있었다. 연간 질소 무기화량의 경우, 리기다소나무 임분은 대조구가 10.6 kg/ha/year, LNP 처리구가 23.3 kg/ha/year, 그리고 HNP 처리구가 6.6 kg/ha/year였으며, 낙엽송 임분은 대조구가 2.0 kg/ha/year, LNP 처리구가 12.1 kg/ha/year, 그리고 HNP 처리구가 16.7 kg/ha/year 이었다. 연간 질산화량의 경우, 리기다소나무 임분은 대조구가 2.8 kg/ha/year, LNP 처리구가 7.6 kg/ha/year, 그러고 HNP 처리구가 4.3 kg/ha/year 였으며, 낙엽송 임분은 대조구가 4.3 kg/ha/year, LNP 처리구가 14.8 kg/ha/year, 그리고 HNP 처리구가 6.6 kg/ha/year 이었다. 조사기간 동안의 질소무기화량 가운데 질산화량이 차지하는 비율은 리기다소나무의 경우, 대조구가 26%, LNP 처리구가 33%, HNP 처리구가 65%였으며, 낙엽송은 대조구와 LNP 처리구가 >100%, 그리고 HNP 처리구에서 40%를 나타내어 낙엽송 임분에서 질산화가 더 많이 이루어진 것으로 나타났다. 이와 같은 연구결과는 산림생태계 내 유사한 환경하에서의 질소무기화 정도는 우점종이나 시비 등과 같은 산림시업에 의해서도 달라질 수 있다는 것을 암시하는 것이다.

Keywords

References

  1. 김춘식. 1995. 루브라 참나무림과 레지노사 소나무림의 토양 질소 무기화에 있어서 개벌의 영향. 한국임학회지 84: 198-206
  2. 김종성, 손요환, 임주훈, 김진수. 1996. 리가다소나무와 낙엽송 인공조림지의 지상부 생체량, 질소와 인의 분포 및 낙엽에 관한 연구. 한국임학회지 85(3): 416-425
  3. 김춘식. 1998. 경기도 광릉 상수리나무 성숙림의 질소 무기화에 관한 연구. 한국임학회지 87(1): 20-26
  4. 농업기술연구소. 1988. 토양화학분석법: 토양, 식물체, 토양미생물, 농촌진흥청 농업기술연구소 450p
  5. 문형태. 1991. 삼림토양의 질소 무기화와 무기질소의 동태. 한국생태학회지 14(3): 317-325
  6. 손요환, 김정태, 이상은, 이임균. 1995. 경기도 광릉시험림의 구주낙엽송, 스트로브잣나무, 서양측백 조림지 토양내 질소 무기화 비교. 한국생태학회지 18(3): 385-395
  7. 이임균, 손요환. 2004. 질소와 인 시비가 경기도 양평지역 리기다소나무와 낙엽송 조림지 토양의 화학성에 미치는 영향. 한국임학회지 93(5): 349-359
  8. Binkley, D. and Matson, P.A. 1983. Ion exchange resin bag method for assessing forest soil nitrogen availability. Soil Science Society of American Journal 47: 1050-1052 https://doi.org/10.2136/sssaj1983.03615995004700050045x
  9. Binkley, D. 1984. Ion-exchange resin bags for assessing soil N availability: the importance of ion concentration, water regime, and microbial competition. Soil Science Society of American Journal 48: 1181-1184 https://doi.org/10.2136/sssaj1984.03615995004800050046x
  10. Binkley, D. 1986. Forest Nutrition Management. John Wiley & Sons. New York. 290p
  11. Binkley, D. and Hart, S.C. 1989. The components of nitrogen availability assessments in forest soils. Springer-Verlag, New york. Advanced Soil Science 10: 57-112
  12. Binkley, D., R. Bell, and Soli ins, P. 1992. Comparison of methods for estimating soil nitrogen transformations in adjacent conifer and alder-conifer forests. Canadian Journal of Forest Research 22: 858-863 https://doi.org/10.1139/x92-115
  13. Boring, R.L., Swank, W.T. Waide, B.J., and Henderson, G.S. 1989. Sources, fates and impacts of nitrogen inputs to terrestrial ecosystems: review and synthesis. Biogeochemistry 6: 119-159
  14. Casals, P., Romanya, J. Cortina, J. Fons, J. Bode, M., and Vallejo, V.R. 1995. Nitrogen supply rate in Scots pine (Pinus sylvestris L.) forests placed in contrasted aspects. Paint Soil 168/169: 67-73 https://doi.org/10.1007/BF00029314
  15. Conover, W.J. and Iman, R.L. 1981. Rank transformations as a bridge between paramatric and non parametric statistics. America Statistics 35: 124-129 https://doi.org/10.2307/2683975
  16. Cortina, J., Romanya, J. and Vallejo, V.R. 1995. Nitrogen and phosphorus leaching from the forest floor of a mature Pinus radiata stand. Geoderma 66: 321-330 https://doi.org/10.1016/0016-7061(95)00006-A
  17. Dorland, S. and Beauchamp, E.G. 1991. Denitrification and ammonification at low soil temperatures. Canadian Journal Forest Research 71: 293-303
  18. Eno, C.F. 1960. Nitrate production in the field by incubating the soil in polyethylene bags. Soil Science Society of America Proceedings 24: 277-279
  19. Foster, N.W. 1989. Influences of seasonal temperature on nitrogen and sulfur mineralization/immobilization in a maple-birch forest floor in central Ontario. Canadian Journal of Soil Science 69: 501-514 https://doi.org/10.4141/cjss89-052
  20. Garten, C.T. and Van Miegroet, H. 1994. Relationships between soil nitrogen dynamics and natural 15N abundance in plant foliage from Great Smoky Mountains National Park. Canadian Journal of Forest Research 24: 1636-1646 https://doi.org/10.1139/x94-212
  21. Gower, S.T. and Son, Y. 1992. Differences in soil and leaf litterfall nitrogen dynamics for five forest plantations. Soil Science Society of America Journal 56: 1959-1966 https://doi.org/10.2136/sssaj1992.03615995005600060051x
  22. Hart, S.C. and Firestone, M.K. 1989. Evaluation of three in situ soil availability assays. Canadian Journal of Forest Research 19: 185-191 https://doi.org/10.1139/x89-026
  23. Hart, S.C., Nason, G.E., Myrold, D.D. and Perry, D.A. 1994. Dynamics of gross nitrogen transformations in an old-growth forest: the carbon connection. Ecology 75: 880-891 https://doi.org/10.2307/1939413
  24. Keeney, D.R. and Nelson, D.W. 1982. Nitrogen inorganic forms. In : Page, A.L. (ed.). Methods of Soil Analysis. Chemical and Microbiological Properties. Agronomy Monographic 9: 643-698
  25. Kim, C.S. 1995. Effects of canopy removal on cellulose decomposition and nitrogen mineralization in Quercus rubra stands. The Korean Journal of Ecology 18(2): 219-230
  26. Kim, D.Y. 1996. Changes in nutrient distribution, cycling, and availability in aspen stands after an intensive harvesting. Journal of Korean Forest Society 85(4): 656-666
  27. MacDonald, N.W., Zak, D.R. and Pregitzer, K.S. 1995. Temperature effects on kinetics of microbial respiration and net nitrogen and sulfur mineralization. Soil Science Society of America Journal 59: 233-240 https://doi.org/10.2136/sssaj1995.03615995005900010036x
  28. Matson, P.A. and Vitousek, P.M. 1981. Nitrogen mineralization and nitrification potentials following clearcutting in the Hoosier National Forest, Indiana. Forest Science 27: 781-791
  29. Mun, H.T. and Whitford, W.G. 1990. Factors affecting annual plants assemblages on banner-tailed kangaroo rat mounds. Journal of Arid Environment 18: 165-173
  30. Nadelhoffer, K.J., Aber, J.D. and Mellilo, J.M. 1983. Leaf-litter production and soil organic matter dynamics along a nitrogen-availability gradient in southern Wisconsin (U.S.A.). Canadian Journal of Forest Ressearch 13: 12-21 https://doi.org/10.1139/x83-003
  31. Nadelhoffer, K.J., Aber, J.D., and Melillo, J.M. 1984. Seasonal patterns of ammonium and nitrate uptake in nine temperate forest ecosystems. Plant Soil 80: 321-335 https://doi.org/10.1007/BF02140039
  32. Nadelhoffer, K.J., Giblin, A.E., Shaver, GR., and Launder, J.A. 1991. Effects of temperature and substrate quality on element mineralization in six arctic soils. Ecology 72: 242-253 https://doi.org/10.2307/1938918
  33. Nakane, K. 1995. Soil carbon cycling in a Japanese cedar (Cryptomeria japonica) plantation. Forest Ecology and Management 72: 185-197 https://doi.org/10.1016/0378-1127(94)03465-9
  34. Pastor, J., Aber, J.D., McClaugherty, C.A. and Melillo, J.M. 1984. Aboveground production and Nand P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Ecology 65: 256-268 https://doi.org/10.2307/1939478
  35. Pastor, J., Stillwell, M.A. and Tilman., D. 1987. Nitrogen mineralization and nitrification in four Minnesota old fields. Oecologia 71: 481-485 https://doi.org/10.1007/BF00379285
  36. Prescott, C.E. and Preston, C.M. 1994. Nitrogen mineralization and decomposition in forest floors in adjacent plantations of western red cedar, western hemlock, and Douglas-fir. Canadian Journal of Forest Research 24: 2424-2431 https://doi.org/10.1139/x94-313
  37. Qualls, R.G., Haines, B.L. and Swank, W.T. 1991. Fluxes of dissolved organic nutrients and humic substances in a deciduous forest. Ecology 72: 254-266 https://doi.org/10.2307/1938919
  38. SAS. 1988. SAS/STAT User's Guide, 6.03 edition, SAS Institute, Cary, NC, USA
  39. Son, Y. and Lee, I.K. 1997. Soil nitrogen mineralization in adjacent stands of larch, pine and oak in central Korea. Annals of Forest Science 54: 1-8 https://doi.org/10.1051/forest:19970101
  40. Stenger, R., Priesack, E., and Beese, F. 1995. Rates of net nitrogen mineralization in disturbed and undisturbed soils. Plant Soil 171: 323-332 https://doi.org/10.1007/BF00010288
  41. Vitousek, P.M. and Matson, P.A. 1985. Disturbance, nitrogen availability, and nitrogen losses in an intensively managed loblolly pine plantation. Ecology 66: 1360-1376 https://doi.org/10.2307/1939189
  42. Wedin, D.A. and Tilman, D. 1990. Species effects on nitrogen cycling: a test with perennial grasses. Oecologia 84: 433-441 https://doi.org/10.1007/BF00328157