DOI QR코드

DOI QR Code

Influences of Silicate Fertilizer Application on Soil Properties and Red Pepper Productivity in Plastic Film House

규산질비료가 시설재배지 토양특성과 고추수량에 미치는 영향

  • Ahn, Byung-Koo (Division of Climate Change Task Force, Jeollabuk-Do Agricultural Research and Extension Services) ;
  • Han, Soo-Gon (Division of Climate Change Task Force, Jeollabuk-Do Agricultural Research and Extension Services) ;
  • Kim, Jong-Yeob (Division of Climate Change Task Force, Jeollabuk-Do Agricultural Research and Extension Services) ;
  • Kim, Kab-Cheol (Division of Climate Change Task Force, Jeollabuk-Do Agricultural Research and Extension Services) ;
  • Ko, Do-Young (Division of Climate Change Task Force, Jeollabuk-Do Agricultural Research and Extension Services) ;
  • Jeong, Seong-Soo (Division of Climate Change Task Force, Jeollabuk-Do Agricultural Research and Extension Services) ;
  • Lee, Jin-Ho (Department of Bioenvironmental Chemistry, Chonbuk National University)
  • 안병구 (전북농업기술원 기후변화대응과) ;
  • 한수곤 (전북농업기술원 기후변화대응과) ;
  • 김종엽 (전북농업기술원 기후변화대응과) ;
  • 김갑철 (전북농업기술원 기후변화대응과) ;
  • 고도영 (전북농업기술원 기후변화대응과) ;
  • 정성수 (전북농업기술원 기후변화대응과) ;
  • 이진호 (전북대학교 생물환경화학과)
  • Received : 2014.09.03
  • Accepted : 2014.10.13
  • Published : 2014.12.31

Abstract

BACKGROUND: This study was conducted to investigate effects of silicate fertilizer application on red pepper (Capsicum annuum L.) productivity with improving soil chemistry under plastic film house in paddy field. METHODS AND RESULTS: The silicate fertilizer was applied as 0, 100, 200, and 300 kg/10a as basal dressing before transplanting pepper plant seedlings. Cultivar of the pepper plant was Cheon-Ha-Dae-Se. Amounts of inorganic fertilizer applied as $N-P_2O_5-K_2O$=19.0-6.4-10.1kg/10a was estimated depending on soil test values. After applying 50% of nitrogen, 100% of phosphorus, and 60% of potassium fertilizers as basal dressing, the seedlings of pepper plant were transplanted. The rests of nitrogen and potassium fertilizers were applied as side-dressing after the first, second, and fourth harvests of red pepper. When comparing selected chemical properties of soils between before transplanting and after final(the fifth) harvest, soil pH, available $P_2O_5$, and exchangeable $Ca^{2+}$ increased with increasing the applications of silicate fertilizer, whereas electrical conductivity(EC) decreased. However, exchangeable $K^+$ was higher with the treatments of 100 and 200 kg/10a, and exchangeable $Mg^{2+}$ was higher with 300 kg/10a application. In addition, nitrogen and phosphorus concentrations of red pepper collected from the first harvesting stage decreased with increasing the applications of silicate fertilizer, but potassium, calcium, and magnesium concentrations in red pepper were highest with 300 kg/10a application. Yield of red pepper increased between 9.0 and 11.8% with the applications of silicate fertilizer. Marketable fruit rate of res pepper was highest(97.3%) with 200 kg/10a application. CONCLUSION: The application of silicate fertilizer as basal dressing in paddy-converted fields improved soil chemistry and increased red pepper productivity.

홍고추 생산을 위해 논 시설재배지의 토양화학성을 개선하고 생산성에 미치는 영향을 조사하기 위해 고추 정식 전에 규산질비료를 0, 100, 200, 300 kg/10a를 처리하였다. $N-P_2O_5-K_2O$는 토양검정에 의해 밑거름으로 질소 50%, 인산 100%, 칼리 60%을 시비한 후, 천하대세 품종을 $120{\times}45cm$ 간격으로 정식하고, 웃거름은 1, 2, 4차 수확 후 3회에 나누어 질소와 칼리를 시비하였다. 최종 5차 수확기에 조사한 토양 pH, 유효인산, 치환성 $Ca^{2+}$은 규산질비료 처리량에 따라 증가하였고, EC는 감소하였다. 유기물함량은 대조구보다 높았고, 치환성 $K^+$은 100과 200 kg/10a, $Mg^{2+}$는 300 kg/10a 처리구에서 높았다. 규산질비료가 정식 60일까지 지상부 생육에 미치는 영향은 적었다. 고추 1차 수확기 잎에 함유되어 있는 N과 P는 규산질비료 처리량과 반비례 관계였고, K. Ca, Mg은 300 kg/10a 처리구에서 가장 많았다. 홍고추 수량은 대조구에 비해 규산질비료 처리구에서 9.0~11.8% 증가하였고, 200 kg/10a 처리구에서 상품과율이 97.3%로 가장 높았고, 비상품과는 105 kg, FW/10a 수준으로 가장 낮았다. 규산질비료 시비량과 건고추수량의 관계식($Y=-0.0022X^2+0.827X+645.7$, $R^2=0.9838$)에 따른 최고수량은 723.4 kg/10a, 이때 규산질비료 시비량은 187.9 kg/10a 이었다. 이상의 결과에서 보는 바와 같이 답전윤환 시설재배지에 규산질비료를 밑거름으로 사용하면 토양화학성이 개선되고, 비상품과 수량이 감소하고 생산량이 증가하였다.

Keywords

References

  1. Aoki, M., Ogawa, M., 1997. Influence of silicon on the blossom-end rot and growth of tomato, J. Sci. Soil Manure. 48, 156-159.
  2. Bae, M.J., Park, Y.G., Jeong, B.R., 2010. Effect of a silicate fertilizer supplemented to a medium on the growth and development of potted plants, Glower Res. J. 18, 50-56.
  3. Bosland, P.W., 1996. The chile industry in the western region of the USA, J. Kor. Capsicum. Res. Coop. 4, 1-9.
  4. Cho, H.J., Choi, H.Y., Lee, Y.W., Lee, Y.J., Chung, J.B., 2004. Availability of silicate fertilizer and its effect on soil pH in upland soils, Korean J. Environ. Agric. 23, 104-110. https://doi.org/10.5338/KJEA.2004.23.2.104
  5. Epstein, E., 1994. The anomaly of silicon in plant, Proc. Natl. Acad. Sci. USA 91, 11-17. https://doi.org/10.1073/pnas.91.1.11
  6. Gee, G.W., Bauder, J.W., 1986. Particle size analysis. In Methods of soil analysis, Part In A. Klute, pp. 383-411. second ed. American Society of Agronomy, Madison, USA.
  7. Harvell, K.P., Bosland, P.W., 1997. The environment produces a significant effect on pungency of chilles, Hort. Sci. 32, 1292.
  8. Joo, J.H., Lee, S.B., 2011. Assessment of silicate fertilizers application affecting soil properties in paddy field, Korean J. Soil Sci. Fert. 44, 1016-1022. https://doi.org/10.7745/KJSSF.2011.44.6.1016
  9. Keeping, M.G., Meyer, J.H., 2006. Silicon-mediated resistance of sugarcane to Eldana saccharina Walker(Lepidoptera: Pyralidate): Effects of silicon source and cultivar, J. Appl. Entomol. 130, 410-420. https://doi.org/10.1111/j.1439-0418.2006.01081.x
  10. Kim, M.S., Kim, Y.H., Hyun, B.K., Yang, J.E., Zhang, Y.S., Yun, H.B., Sonn, Y.K., Lee, Y.J., Ha, S.K., 2011. Rice yield and changes of available silicate in paddy soils from long-term application of chemical fertilizers and soil amendments, Korean J. Soil Sci. Fert. 44, 1118-1123. https://doi.org/10.7745/KJSSF.2011.44.6.1118
  11. Lee, C.H., Yang, M.S., Chang, K.W., Lee, Y.B., Chung, K.Y., Kim, P.J., 2005. Reducing nitrogen fertilization level of rice(Oryza sativa L.) by silicate application in Korean paddy soil, Korean J. Soil Sci. Fert. 38, 194-201.
  12. Lee, J.S., Yiem, M.S., 2000. Effect of soluble silicon on development of powdery mildew(Sphaerotheca fuliginea ) in cucumber plants, Korean J. Pestic. Sci. 4, 37-43.
  13. Lee, S.H., Cho, H.J., Shin, H.J., Shin, Y.S., Park, S.D., Kim, B.J., Chung, J.B., 2003. Effect of silicate fertilizer on oriental melon in plastic film house, Korean J. Soil Sci. Fert. 36, 407-416.
  14. Lee, Y.B., Kim, P.J., 2006. Effects of silicate fertilizer on increasing phosphate availability in salt accumulated soil during Chinese cabbage cultivation, Korean J. Soil Sci. Fert. 39, 8-14.
  15. Ma, J.F., 2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stress, Soil Sci. Plant Nutr. 50, 11-18. https://doi.org/10.1080/00380768.2004.10408447
  16. Mitani, N., Ma, J.F., 2005. Uptake system of silicon in different plant species, J. Expt. Bot. 56, 1255-1261. https://doi.org/10.1093/jxb/eri121
  17. Miyake, Y., Takahashi, E., 1983. Effect of silicon on the growth of solution cultured cucumber plant, Soil Sci. Plant Nutr. 29, 71-83. https://doi.org/10.1080/00380768.1983.10432407
  18. NAAS(National Academy of Agricultural Science). 2010. Methods of soil chemical analysis, Rural Development Administration, Korea. ISBN : 978-89-480-0913-2 93520.
  19. Ryu, N.H., Choi, M.Y., Ryu, Y.J., Cho, H.J., Lee, Y.S., Lee, Y.D., Chung, J.B., 2003. Suppression of powdery mildew development in oriental melon by silicate fertilizer, Korean. J. Envrion. Agric. 22, 255-260. https://doi.org/10.5338/KJEA.2003.22.4.255
  20. Sivanesan, I., Son, M.S., Lee, J.P., Jeong, B.R., 2010. Effects of silicon on growth of Tagetes patula L. 'Boy Orange' and Yellow Boy seedlings cultured in an environment controlled chamber, Propagation Ornamental Plants 10, 136-140.
  21. Sommer, A.H., 1926. Studies concerning the essential nature of aluminium and silicon for plant growth, Univ. California Publ. Agric. Sci. 5, 57.
  22. Son, M.S., Oh, H.J., Song, J.Y., Lim, M.Y., Sivanesan, I., Jeong, B.R., 2012. Effect of silicon source and application method on growth of kalanchoe Peperu, Kor. J. Hort. Sci. Technol. 30, 250-255. https://doi.org/10.7235/hort.2012.11097
  23. Suehisa, R.H., Young, O.R., Sherman, D.G., 1963. Effects of silicates on phosphorus availability to sudangrass grown on Hawaiian soils, Hawaii Agric. Exp. Stn. Bull. p. 51.
  24. Van der Vorm, P.D.J., 1980. Uptake of Si by five plant species as influenced by variations in Si-supply. Plant and Soil 56, 153-156. https://doi.org/10.1007/BF02197962
  25. Won, J.G., Kim, S.J., Ahn, D.J., Seo, Y.J., Choi, C.D., Lee, S.C., 2008. Effect of silicate application on grain quality and storage characteristics in rice, Korean J. Crop. Sci. 53, 31-36.

Cited by

  1. Effects of Granular Silicate on Watermelon (Citrullus lanatus var. lanatus) Growth, Yield, and Characteristics of Soil Under Greenhouse vol.48, pp.5, 2015, https://doi.org/10.7745/KJSSF.2015.48.5.456