• Title/Summary/Keyword: Soil moisture prediction

Search Result 121, Processing Time 0.034 seconds

Experimental Validation of Tractive Performance Prediction Model for Flexible Tracked Vehicles (연성 궤도형차량의 견인성능 예측 모델의 실험적 검증)

  • 박원엽;이규승
    • Journal of Biosystems Engineering
    • /
    • v.24 no.2
    • /
    • pp.89-98
    • /
    • 1999
  • In this paper, to estimate the effectiveness of the tractive performance prediction model(TPPMTV98) which was developed to predict the tractive performance of flexible tracked vehicles in previous paper, the experimental substantiation of the TPPMTV98 were conducted with the reconstructed tracked vehicle on the loam soil with the moisture content of 18.92%, and bevameter was constructed in order to measure soil properties in situ. The drawbar pulls measure were compared with predicted ones. As a result, the predicted drawbar pulls by the TPPMTV98 were well matched to the measured ones. Such results implied that the TPPMTV98 could well estimate the drawbar pulls at given soil conditions, and would be very useful as a simulation tool for designing a flexible tracked vehicle and predicting its tractive performance.

  • PDF

Effect of precipitation on soil respiration in a temperate broad-leaved forest

  • Jeong, Seok-Hee;Eom, Ji-Young;Park, Joo-Yeon;Chun, Jung-Hwa;Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.77-84
    • /
    • 2018
  • Background: For understanding and evaluating a more realistic and accurate assessment of ecosystem carbon balance related with environmental change or difference, it is necessary to analyze the various interrelationships between soil respiration and environmental factors. However, the soil temperature is mainly used for gap filling and estimation of soil respiration (Rs) under environmental change. Under the fact that changes in precipitation patterns due to climate change are expected, the effects of soil moisture content (SMC) on soil respiration have not been well studied relative to soil temperature. In this study, we attempt to analyze relationship between precipitation and soil respiration in temperate deciduous broad-leaved forest for 2 years in Gwangneung. Results: The average soil temperature (Ts) measured at a depth of 5 cm during the full study period was $12.0^{\circ}C$. The minimum value for monthly Ts was $-0.4^{\circ}C$ in February 2015 and $2.0^{\circ}C$ in January 2016. The maximum monthly Ts was $23.6^{\circ}C$ in August in both years. In 2015, annual precipitation was 823.4 mm and it was 1003.8 mm in 2016. The amount of precipitation increased by 21.9% in 2016 compared to 2015, but in 2015, it rained for 8 days more than in 2016. In 2015, the pattern of low precipitation was continuously shown, and there was a long dry period as well as a period of concentrated precipitation in 2016. 473.7 mm of precipitation, which accounted for about 51.8% of the precipitation during study period, was concentrated during summer (June to August) in 2016. The maximum values of daily Rs in both years were observed on the day when precipitation of 20 mm or more. From this, the maximum Rs value in 2015 was $784.3mg\;CO_2\;m^{-2}\;h^{-1}$ in July when 26.8 mm of daily precipitation was measured. The maximum was $913.6mg\;CO_2\;m^{-2}\;h^{-1}$ in August in 2016, when 23.8 mm of daily precipitation was measured. Rs on a rainy day was 1.5~1.6 times higher than it without precipitation. Consequently, the annual Rs in 2016 was about 12% higher than it was in 2015. It was shown a result of a 14% increase in summer precipitation from 2015. Conclusions: In this study, it was concluded that the precipitation pattern has a great effect on soil respiration. We confirmed that short-term but intense precipitation suppressed soil respiration due to a rapid increase in soil moisture, while sustained and adequate precipitation activated Rs. In especially, it is very important role on Rs in potential activating period such as summer high temperature season. Therefore, the accuracy of the calculated values by functional equation can be improved by considering the precipitation in addition to the soil temperature applied as the main factor for long-term prediction of soil respiration. In addition to this, we believe that the accuracy can be further improved by introducing an estimation equation based on seasonal temperature and soil moisture.

Evaluation of soil-concrete interface shear strength based on LS-SVM

  • Zhang, Chunshun;Ji, Jian;Gui, Yilin;Kodikara, Jayantha;Yang, Sheng-Qi;He, Lei
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.361-372
    • /
    • 2016
  • The soil-concrete interface shear strength, although has been extensively studied, is still difficult to predict as a result of the dependence on many factors such as normal stresses, surface roughness, particle sizes, moisture contents, dilation angles of soils, etc. In this study, a well-known rigorous statistical learning approach, namely the least squares support vector machine (LS-SVM) realized in a ubiquitous spreadsheet platform is firstly used in estimating the soil-structure interface shear strength. Instead of studying the complicated mechanism, LS-SVM enables to explore the possible link between the fundamental factors and the interface shear strengths, via a sophisticated statistic approach. As a preliminary investigation, the authors study the expansive soils that are found extensively in most countries. To reduce the complexity, three major influential factors, e.g., initial moisture contents, initial dry densities and normal stresses of soils are taken into account in developing the LS-SVM models for the soil-concrete interface shear strengths. The predicted results by LS-SVM show reasonably good agreement with experimental data from direct shear tests.

Predicting soil-water characteristic curves of expansive soils relying on correlations

  • Ahmed M. Al-Mahbashi;Muawia Dafalla;Mosleh Al-Shamrani
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.625-633
    • /
    • 2023
  • The volume changes associated with moisture or suction variation in expansive soils are of geotechnical and geoenvironmental design concern. These changes can impact the performance of infrastructure projects and lightweight structures. Assessment of unsaturated function for these materials leads to better interpretation and understanding, as well as providing accurate and economic design. In this study, expansive soils from different regions of Saudi Arabia were studied for their basic properties including gradation, plasticity and shrinkage, swelling, and consolidation characteristics. The unsaturated soil functions of saturated water content, air-entry values, and residual states were determined by conducting the tests for the entire soil water characteristic curves (SWCC) using different techniques. An attempt has been made to provide a prediction model for unsaturated properties based on the basic properties of these soils. Once the profile of SWCC has been predicted the time and cost for many tests can be saved. These predictions can be utilized in practice for the application of unsaturated soil mechanics on geotechnical and geoenvironmental projects.

Growth Monitoring for Soybean Smart Water Management and Production Prediction Model Development

  • JinSil Choi;Kyunam An;Hosub An;Shin-Young Park;Dong-Kwan Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.58-58
    • /
    • 2022
  • With the development of advanced technology, automation of agricultural work is spreading. In association with the 4th industrial revolution-based technology, research on field smart farm technology is being actively conducted. A state-of-the-art unmanned automated agricultural production demonstration complex was established in Naju-si, Jeollanam-do. For the operation of the demonstration area platform, it is necessary to build a sophisticated, advanced, and intelligent field smart farming model. For the operation of the unmanned automated agricultural production demonstration area platform, we are building data on the growth of soybean for smart cultivated crops and conducting research to determine the optimal time for agricultural work. In order to operate an unmanned automation platform, data is collected to discover digital factors for water management immediately after planting, water management during the growing season, and determination of harvest time. A subsurface drip irrigation system was established for smart water management. Irrigation was carried out when the soil moisture was less than 20%. For effective water management, soil moisture was measured at the surface, 15cm, and 30cm depth. Vegetation indices were collected using drones to find key factors in soybean production prediction. In addition, major growth characteristics such as stem length, number of branches, number of nodes on the main stem, leaf area index, and dry weight were investigated. By discovering digital factors for effective decision-making through data construction, it is expected to greatly enhance the efficiency of the operation of the unmanned automated agricultural production demonstration area.

  • PDF

Survey of spatial and temporal landslide prediction methods and techniques

  • An, Hyunuk;Kim, Minseok;Lee, Giha;Viet, Tran The
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.507-521
    • /
    • 2016
  • Landslides are one of the most common natural hazards causing significant damage and casualties every year. In Korea, the increasing trend in landslide occurrence in recent decades, caused by climate change, has set off an alarm for researchers to find more reliable methods for landslide prediction. Therefore, an accurate landslide-susceptibility assessment is fundamental for preventing landslides and minimizing damages. However, analyzing the stability of a natural slope is not an easy task because it depends on numerous factors such as those related to vegetation, soil properties, soil moisture distribution, the amount and duration of rainfall, earthquakes, etc. A variety of different methods and techniques for evaluating landslide susceptibility have been proposed, but up to now no specific method or technique has been accepted as the standard method because it is very difficult to assess different methods with entirely different intrinsic and extrinsic data. Landslide prediction methods can fall into three categories: empirical, statistical, and physical approaches. This paper reviews previous research and surveys three groups of landslide prediction methods.

Precision Measurement of Water Content in Soil Using Dual RF Impedance Changes (고주파의 2개 주파수 임피던스 변화를 이용한 토양내 수분함량 정밀측정)

  • 김기복;김상천;주대성;윤동진
    • Journal of Biosystems Engineering
    • /
    • v.28 no.4
    • /
    • pp.369-376
    • /
    • 2003
  • This study was conducted to develop a precision measurement method of water content in soil (find sand and silty sand) using dual RF impedance changes. The electrically stable perpendicular plate capacitive sensor was fabricated and utilized to sense the water content in soil. Crystal oscillators of 5 and 20 MHz and related circuits were designed to detect the capacitance changes of a perpendicular plate capacitive sensor with soil samples at various volumetric water contents. A multiple regression model for volumetric water content having dual oscillation frequency changes at 5 and 20 MHz as independent variables resulted in coefficient of determination of 0.963 and standard error calibration of 0.030 cm$^3$/cm$^3$ for calibration and coefficient of determination of 0.966, standard error of prediction of 0.027 cm$^3$/cm$^3$ and bias of 0.001 cm$^3$/cm$^3$ for prediction.

A study of applying soil moisture for improving false alarm rates in monitoring landslides (산사태 모니터링 오탐지율 개선을 위한 토양수분자료 활용에 관한 연구)

  • Oh, Seungcheol;Jeong, Jaehwan;Choi, Minha;Yoon, Hongsik
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1205-1214
    • /
    • 2021
  • Precipitation is one of a major causes of landslides by rising of pore water pressure, which leads to fluctuations of soil strength and stress. For this reason, precipitation is the most frequently used to determine the landslide thresholds. However, using only precipitation has limitations in predicting and estimating slope stability quantitatively for reducing false alarm events. On the other hand, Soil Moisture (SM) has been used for calculating slope stability in many studies since it is directly related to pore water pressure than precipitation. Therefore, this study attempted to evaluate the appropriateness of applying soil moisture in determining the landslide threshold. First, the reactivity of soil saturation level to precipitation was identified through time-series analysis. The precipitation threshold was calculated using daily precipitation (Pdaily) and the Antecedent Precipitation Index (API), and the hydrological threshold was calculated using daily precipitation and soil saturation level. Using a contingency table, these two thresholds were assessed qualitatively. In results, compared to Pdaily only threshold, Goesan showed an improvement of 75% (Pdaily + API) and 42% (Pdaily + SM) and Changsu showed an improvement of 33% (Pdaily + API) and 44% (Pdaily + SM), respectively. Both API and SM effectively enhanced the Critical Success Index (CSI) and reduced the False Alarm Rate (FAR). In the future, studies such as calculating rainfall intensity required to cause/trigger landslides through soil saturation level or estimating rainfall resistance according to the soil saturation level are expected to contribute to improving landslide prediction accuracy.

Prediction Equation of Compulsory Replacement Depth of Silty Layer in Sihwa Region (시화지역 실트질 지반에서 강제치환심도 예측식 산정)

  • Park, Young;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.9
    • /
    • pp.55-66
    • /
    • 2011
  • The compulsory replacement method for soft ground treatment is simple but excellent in economic feasibility. However, the accurate replacement depth is not easy to properly predicted since an theoretical algorithm has not presently been established so far. In this research a prediction equation is proposed in a new form based on the liquid limit and natural moisture content rather than on the bearing capacity of the soft soil layer. The equation is based on the monitoring as well as the confirmatory boring at the site. In addition, the equation has been derived from the data obtained from the analysis of the characteristics of silt/clay of Sihwa region. The final prediction equation has been drawn by applying the regression analysis method.

A Case-study of Compression Index Prediction on Very Soft Clay (초연약 점토지반 압축지수 추정에 관한 연구)

  • Kim, Byeong-Kyu;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.4
    • /
    • pp.13-18
    • /
    • 2015
  • Considering dredged ground is consolidated more than one meter, Compression index prediction is very important. But, UD-sampling and consolidation test are impossible because of high moisture content and weak shear strength. This paper demonstrates the compression index relation, $C_{c(d)}=F(e_d,C_c)$, between in-situ and dredged clay using N. Keith Tovey's Omega point and soil physical properties. Good relationship is confirmed between proposed formula and measured primary consolidation result on dredged ground in The Republic of Korea.